Timezone: »
A trustworthy AI system demands the ability to learn a broad range of knowledge with modest data and transfer the learned prior to the concrete task. In this work, we shall discuss the unsupervised meta-learning. We propose to learn multi-modal task-specific priors in the latent space using energy-based prior model, where the energy term couples a continuous latent vector and a symbolic one-hot label. Such coupling in the latent space informs the latent vector of the underlying category from the observed example. Our model can be learned in an unsupervised manner in the meta-training phase and evaluated in a semi-supervised manner in the meta-test phase. Our experiments show our method outperforms all the state-of-the-arts on miniImageNet and gives competitive results on Omniglot.
Author Information
Bo Pang (UCLA)
Deqian Kong (University of California, Los Angeles)
Ying Nian Wu (University of California, Los Angeles)
More from the Same Authors
-
2020 : Paper 2: Energy-Based Continuous Inverse Optimal Control »
Yifei Xu · Jianwen Xie · Chris Baker · Yibiao Zhao · Ying Nian Wu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2022 : Learn to Select Good Examples with Reinforcement Learning for Semi-structured Mathematical Reasoning »
Pan Lu · Liang Qiu · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Tanmay Rajpurohit · Peter Clark · Ashwin Kalyan -
2022 : Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells »
Dehong Xu · Ruiqi Gao · Wenhao Zhang · Xue-Xin Wei · Ying Nian Wu -
2022 : Neural-Symbolic Recursive Machine for Systematic Generalization »
Qing Li · Yixin Zhu · Yitao Liang · Ying Nian Wu · Song-Chun Zhu · Siyuan Huang -
2023 Poster: Learning Energy-Based Prior Model with Diffusion-Amortized MCMC »
Peiyu Yu · Yaxuan Zhu · Sirui Xie · Xiaojian (Shawn) Ma · Ruiqi Gao · Song-Chun Zhu · Ying Nian Wu -
2023 Poster: A Recurrent Neural Circuit Mechanism of Temporal-scaling Equivariant Representation »
Junfeng Zuo · Xiao Liu · Ying Nian Wu · Si Wu · Wenhao Zhang -
2023 Poster: Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models »
Pan Lu · Baolin Peng · Hao Cheng · Michel Galley · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Jianfeng Gao -
2022 Poster: Translation-equivariant Representation in Recurrent Networks with a Continuous Manifold of Attractors »
Wenhao Zhang · Ying Nian Wu · Si Wu -
2022 Poster: Learning Probabilistic Models from Generator Latent Spaces with Hat EBM »
Mitch Hill · Erik Nijkamp · Jonathan Mitchell · Bo Pang · Song-Chun Zhu -
2021 Poster: On Path Integration of Grid Cells: Group Representation and Isotropic Scaling »
Ruiqi Gao · Jianwen Xie · Xue-Xin Wei · Song-Chun Zhu · Ying Nian Wu -
2021 Poster: Iterative Teacher-Aware Learning »
Luyao Yuan · Dongruo Zhou · Junhong Shen · Jingdong Gao · Jeffrey L Chen · Quanquan Gu · Ying Nian Wu · Song-Chun Zhu -
2021 Poster: Unsupervised Foreground Extraction via Deep Region Competition »
Peiyu Yu · Sirui Xie · Xiaojian (Shawn) Ma · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu -
2020 Poster: Learning Latent Space Energy-Based Prior Model »
Bo Pang · Tian Han · Erik Nijkamp · Song-Chun Zhu · Ying Nian Wu -
2019 Poster: Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model »
Erik Nijkamp · Mitch Hill · Song-Chun Zhu · Ying Nian Wu -
2018 Poster: Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation »
Siyuan Huang · Siyuan Qi · Yinxue Xiao · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu