Timezone: »
Deep learning in molecular and materials sciences is limited by the lack of integration between applied science, artificial intelligence, and high-performance computing. Bottlenecks with respect to the amount of training data, the size and complexity of model architectures, and the scale of the compute infrastructure are all key factors limiting the scaling of deep learning for molecules and materials. Here, we present LitMatter, a lightweight framework for scaling molecular deep learning methods. We train four graph neural network architectures on over 400 GPUs and investigate the scaling behavior of these methods. Depending on the model architecture, training time speedups up to 60x are seen. Empirical neural scaling relations quantify the model-dependent scaling and enable optimal compute resource allocation and the identification of scalable molecular geometric deep learning model implementations.
Author Information
Nathan Frey (Massachusetts Institute of Technology)
I am a theoretical materials physicist, National Defense Science & Engineering Graduate fellow, and PhD candidate in Materials Science & Engineering at the University of Pennsylvania in Philadelphia. I use multiscale modeling and computational techniques, including machine learning, to discover and design new materials for next-generation information processing platforms and sustainable energy applications.
Siddharth Samsi (MIT Lincoln Laboratory)
Lin Li (MIT Lincoln Laboratory)
Connor Coley (MIT)
More from the Same Authors
-
2021 : Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development »
Kexin Huang · Tianfan Fu · Wenhao Gao · Yue Zhao · Yusuf Roohani · Jure Leskovec · Connor Coley · Cao Xiao · Jimeng Sun · Marinka Zitnik -
2021 Spotlight: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2021 : Bringing Atomistic Deep Learning to Prime Time »
Nathan Frey · Siddharth Samsi · Bharath Ramsundar · Connor Coley -
2022 : De novo PROTAC design using graph-based deep generative models »
Divya Nori · Connor Coley · Rocío Mercado -
2022 : De novo PROTAC design using graph-based deep generative models »
Divya Nori · Connor Coley · Rocío Mercado -
2022 : Graph Contrastive Learning for Materials »
Teddy Koker · Keegan Quigley · Will Spaeth · Nathan Frey · Lin Li -
2022 : A High-Throughput Platform for Efficient Exploration of Polypeptides Chemical Space via Automation and Machine Learning »
Guangqi Wu · Connor Coley · Hua Lu -
2022 : Automated Materials Synthesis Keynote »
Connor Coley -
2022 : MolPAL: Software for Sample Efficient High-Throughput Virtual Screening »
David Graff · Connor Coley -
2022 Poster: Reinforced Genetic Algorithm for Structure-based Drug Design »
Tianfan Fu · Wenhao Gao · Connor Coley · Jimeng Sun -
2022 Poster: Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization »
Wenhao Gao · Tianfan Fu · Jimeng Sun · Connor Coley -
2021 : AI X Chemistry »
Connor Coley -
2021 Poster: Learning Graph Models for Retrosynthesis Prediction »
Vignesh Ram Somnath · Charlotte Bunne · Connor Coley · Andreas Krause · Regina Barzilay -
2021 Poster: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2020 Poster: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology »
Mark Veillette · Siddharth Samsi · Chris Mattioli -
2019 Poster: Retrosynthesis Prediction with Conditional Graph Logic Network »
Hanjun Dai · Chengtao Li · Connor Coley · Bo Dai · Le Song -
2017 Poster: Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network »
Wengong Jin · Connor Coley · Regina Barzilay · Tommi Jaakkola