Timezone: »
In this work, we consider semi-supervised segmentation as a dense prediction problem using prototype vector correlation and propose a simple way to represent each segmentation class with multiple prototype vectors. To avoid degenerate solutions, two regularization strategies are applied on unlabeled images, based on mutual information maximization and orthogonality. The first one ensures that all prototype vectors are considered by the network, while the other one explicitly enforces prototypes to be orthogonal by decreasing their cosine distance. Experimental results on two benchmark medical segmentation datasets reveal our method's effectiveness in improving segmentation performance when few annotated images are available.
Author Information
Jizong Peng (ETS)
Christian Desrosiers (Ecole de technologie superieure)
Marco Pedersoli (ETS Montreal)
More from the Same Authors
-
2021 : Shift and Scale is Detrimental To Few-Shot Transfer »
Moslem Yazdanpanah · Christian Desrosiers · Mohammad Havaei · Eugene Belilovsky · Samira Ebrahimi Kahou -
2021 Poster: Self-Paced Contrastive Learning for Semi-supervised Medical Image Segmentation with Meta-labels »
Jizong Peng · Ping Wang · Christian Desrosiers · Marco Pedersoli -
2018 : Poster session »
David Zeng · Marzieh S. Tahaei · Shuai Chen · Felix Meister · Meet Shah · Anant Gupta · Ajil Jalal · Eirini Arvaniti · David Zimmerer · Konstantinos Kamnitsas · Pedro Ballester · Nathaniel Braman · Udaya Kumar · Sil C. van de Leemput · Junaid Qadir · Hoel Kervadec · Mohamed Akrout · Adrian Tousignant · Matthew Ng · Raghav Mehta · Miguel Monteiro · Sumana Basu · Jonas Adler · Adrian Dalca · Jizong Peng · Sungyeob Han · Xiaoxiao Li · Karthik Gopinath · Joseph Cheng · Bogdan Georgescu · Kha Gia Quach · Karthik Sarma · David Van Veen