Timezone: »
Magnetic Resonance Imaging (MRI) can accurately identify pathologies, their use for population-level screening of diseases has remained infeasible due to the high costs associated with their operations. A large portion of the cost is attributed to the slow process of acquiring enough data to generate images for the human eye to read and identify clinically relevant variables. Existing methods focus on reducing costs by accelerating the data acquisition process. However, the requirement to generate a high-fidelity image imposes certain constraints on the acquisition process, limiting the speedups achievable. We propose the AcceleRated MRScreener (ARMS), which learns to infer the clinically relevant variable directly from raw measurements acquired by the scanner, achieving a speedup of 20x in the data acquisition process, thereby bringing the technology closer to screening. We test the efficacy of our method on the task of identifying clinically significant prostate tumors in the MR scans of the abdomen and in identifying ACL sprains and Meniscus tears in the knee MR scans.
Author Information
Raghav Singhal (New York University)
Mukund Sudarshan (New York University)
Angela Tong (New York University)
Daniel Sodickson (Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine)
Rajesh Ranganath (New York University)
More from the Same Authors
-
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : Learning Invariant Representations with Missing Data »
Mark Goldstein · Adriel Saporta · Aahlad Puli · Rajesh Ranganath · Andrew Miller -
2021 : Individual treatment effect estimation in the presence of unobserved confounding based on a fixed relative treatment effect »
Wouter van Amsterdam · Rajesh Ranganath -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 Poster: Inverse-Weighted Survival Games »
Xintian Han · Mark Goldstein · Aahlad Puli · Thomas Wies · Adler Perotte · Rajesh Ranganath -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2020 Poster: Deep Direct Likelihood Knockoffs »
Mukund Sudarshan · Wesley Tansey · Rajesh Ranganath -
2020 Poster: General Control Functions for Causal Effect Estimation from IVs »
Aahlad Puli · Rajesh Ranganath -
2020 Poster: X-CAL: Explicit Calibration for Survival Analysis »
Mark Goldstein · Xintian Han · Aahlad Puli · Adler Perotte · Rajesh Ranganath -
2020 Poster: Causal Estimation with Functional Confounders »
Aahlad Puli · Adler Perotte · Rajesh Ranganath -
2020 : Deep Direct Likelihood Knockoffs »
Mukund Sudarshan -
2019 Poster: Energy-Inspired Models: Learning with Sampler-Induced Distributions »
John Lawson · George Tucker · Bo Dai · Rajesh Ranganath