Timezone: »
Deep learning models are being increasingly adopted in wide array of scientific domains, especially to handle high-dimensionality and volume of the scientific data. However, these models tend to be brittle due to their complexity and overparametrization, especially to the adversarial perturbations that can appear due to common image processing such as compression or blurring that are often seen with real scientific data. It is crucial to understand this brittleness and develop models robust to these adversarial perturbations. To this end, we study the effect of observational noise from the exposure time, as well as the worst case scenario of a one-pixel attack as a proxy for compression or telescope errors on performance of ResNet18 trained to distinguish between galaxies of different morphologies in LSST mock data. We also explore how domain adaptation techniques can help improve model robustness in case of this type of naturally occurring attacks and help scientists build more trustworthy and stable models.
Author Information
Aleksandra Ciprijanovic (Fermi National Accelerator Laboratory)
Diana Kafkes (Fermi National Accelerator Laboratory)
Gabriel Nathan Perdue (Fermilab)
Sandeep Madireddy (Argonne National Laboratory)
Stefan Wild (Argonne National Laboratory)
Brian Nord (Fermi National Accelerator Laboratory)
More from the Same Authors
-
2021 : Physical Benchmarking for AI-generated Cosmic Web »
Xiaofeng Dong · Salman Habib · Sandeep Madireddy -
2021 : Using Mask R-CNN to detect and mask ghosting and scattered-light artifacts in astronomical images »
Dimitrios Tanoglidis · Aleksandra Ciprijanovic -
2021 : DeepZipper: A Novel Deep Learning Architecture for Lensed Supernovae Identification »
Robert Morgan · Brian Nord -
2021 : Error Analysis of Kilonova Surrogate Models »
Kamile Lukosiute · Brian Nord -
2022 : Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection »
Aleksandra Ciprijanovic · Ashia Lewis · Kevin Pedro · Sandeep Madireddy · Brian Nord · Gabriel Nathan Perdue · Stefan Wild -
2022 : Neural Inference of Gaussian Processes for Time Series Data of Quasars »
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord -
2022 : A robust estimator of mutual information for deep learning interpretability »
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo -
2022 : DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation »
Gourav Khullar · Brian Nord · Aleksandra Ciprijanovic · Jason Poh · Fei Xu · Ashwin Samudre -
2022 : Strong Lensing Parameter Estimation on Ground-Based Imaging Data Using Simulation-Based Inference »
Jason Poh · Ashwin Samudre · Aleksandra Ciprijanovic · Brian Nord · Joshua Frieman · Gourav Khullar -
2022 : General policy mapping: online continual reinforcement learning inspired on the insect brain »
Angel Yanguas-Gil · Sandeep Madireddy -
2022 : Towards Continually Learning Application Performance Models »
Ray Sinurat · Sandeep Madireddy · Anurag Daram · Haryadi Gunawi · Robert Ross -
2022 : Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness »
Sumegha Premchandar · Sanket Jantre · Prasanna Balaprakash · Sandeep Madireddy -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2016 Poster: Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian »
Victor Picheny · Robert B Gramacy · Stefan Wild · Sebastien Le Digabel