Timezone: »
The identification of gravitationally lensed supernovae in modern astronomical datasets is a needle-in-a-haystack problem with dramatic scientific implications: discovered systems can be used to directly measure and resolve the current tension on the value of the expansion rate of the Universe today. We hypothesize that the image-based features of the gravitational lensing and the temporal-based features of the time-varying brightness are equally important in classifications. We therefore develop a deep learning technique that utilizes long short-term memory cells for the time-varying brightness of astronomical systems and convolutional layers for the raw images of astronomical systems simultaneously, and then concatenates the feature maps with multiple fully connected layers. This novel approach achieves a receiver operating characteristic area under curve of 0.97 on simulated astronomical data and more importantly outperforms standalone versions of its recurrent and convolutional constituents. We find that combining recurrent and convolutional layers within one coherent network architecture allows the network to optimally weight and aggregate the temporal and image features to yield a promising tool for lensed supernovae identification.
Author Information
Robert Morgan (University of Wisconsin-Madison)
Rob is currently in the final year of his PhD at the University of Wisconsin-Madison with a focus on machine learning applications in large astronomical datasets. Over the past few years, Rob has led time-domain searches for the sources of both gravitational waves and high-energy neutrinos, and contributed to computer-vision-based searches for strong gravitational lensing systems. In both cases, he specializes in developing state-of-the-art detection methods for rare astronomical objects.
Brian Nord (Fermi National Accelerator Laboratory)
More from the Same Authors
-
2021 : Robustness of deep learning algorithms in astronomy - galaxy morphology studies »
Aleksandra Ciprijanovic · Diana Kafkes · Gabriel Nathan Perdue · Sandeep Madireddy · Stefan Wild · Brian Nord -
2021 : Error Analysis of Kilonova Surrogate Models »
Kamile Lukosiute · Brian Nord -
2022 : Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection »
Aleksandra Ciprijanovic · Ashia Lewis · Kevin Pedro · Sandeep Madireddy · Brian Nord · Gabriel Nathan Perdue · Stefan Wild -
2022 : Neural Inference of Gaussian Processes for Time Series Data of Quasars »
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord -
2022 : A robust estimator of mutual information for deep learning interpretability »
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo -
2022 : DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation »
Gourav Khullar · Brian Nord · Aleksandra Ciprijanovic · Jason Poh · Fei Xu · Ashwin Samudre -
2022 : Strong Lensing Parameter Estimation on Ground-Based Imaging Data Using Simulation-Based Inference »
Jason Poh · Ashwin Samudre · Aleksandra Ciprijanovic · Brian Nord · Joshua Frieman · Gourav Khullar -
2023 : Domain Adaptation for Measurements of Strong Gravitational Lenses »
Paxson Swierc · Yifan Zhao · Aleksandra Ciprijanovic · Brian Nord -
2023 : Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets »
Andrea Roncoli · Aleksandra Ciprijanovic · M Voetberg · Francisco Villaescusa · Brian Nord -
2023 : DeepSurveySim: Simulation Software and Benchmark Challenges for Astronomical Observation Scheduling »
M Voetberg · Brian Nord -
2023 : Self-Driving Telescopes: Autonomous Scheduling of Astronomical Observation Campaigns with Offline Reinforcement Learning »
Franco Terranova · M Voetberg · Brian Nord · Amanda Pagul -
2023 Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences »
Brian Nord · Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Siddharth Mishra-Sharma · Benjamin Nachman · Kyle Cranmer · Gilles Louppe · Savannah Thais -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais