Timezone: »
Classical variational simulation of the Quantum Approximate Optimization Algorithm
Matija Medvidović · Giuseppe Carleo
We introduce a method to simulate parametrized quantum circuits, an architecture behind many practical algorithms on near-term hardware, focusing on the Quantum Approximate Optimization Algorithm (QAOA). A neural-network parametrization of the many-qubit wave function is used, reaching 54 qubits at 4 QAOA layers, approximately implementing 324 RZZ gates and 216 RX gates without requiring large-scale computational resources. our approach can be used to provide accurate QAOA simulations at previously unexplored parameter values and to benchmark the next generation of experiments in the Noisy Intermediate-Scale Quantum (NISQ) era.
Author Information
Matija Medvidović (Columbia University)
Giuseppe Carleo (EPFL)
More from the Same Authors
-
2021 : Neural Tensor Contractions and the Expressive Power of Deep Neural Quantum States »
Or Sharir · Amnon Shashua · Giuseppe Carleo -
2022 : Learning latent variable evolution for the functional renormalization group »
Matija Medvidović · Alessandro Toschi · Giorgio Sangiovanni · Cesare Franchini · Andy Millis · Anirvan Sengupta · Domenico Di Sante -
2023 : Variational quantum dynamics of two-dimensional rotor models »
Matija Medvidović · Dries Sels -
2023 : Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function »
Jiawei Zang · Matija Medvidović · Dominik Kiese · Domenico Di Sante · Anirvan Sengupta · Andy Millis