Timezone: »
Bayesian techniques have been shown to be extremely efficient in optimizing expensive to evaluate black box functions, in both computational (offline design) and physical (online experimental control) contexts. Optimizing physical systems often comes with extra challenges due to costs associated with changing parameters in real life experimentation, such as measurement location in physical space or mechanical/electrical actuation. In these cases, the cost of changing a given input parameter is often proportional to the magnitude of the change, for example the time cost associated with the distance a physical actuator must travel. To minimize these costs, optimization algorithms can simply limit the maximum distance travelled in input space during each step. However, hard restrictions on the travel distance inhibits global exploration advantages normally afforded by Bayesian optimization algorithms. In this work, we describe a proximal weighting term that can bias acquisition functions towards localized exploration, while still allowing for large travel distances if far away points are predicted to be valuable for observation. We describe a use case where this weighting is used to minimize the uncertainty of a particle accelerator Bayesian model in a smooth manner, which in turn, minimizes temporal costs associated with changing input parameters.
Author Information
Ryan Roussel (SLAC National Accelerator Laboratory)
Auralee Edelen (SLAC / Stanford)
More from the Same Authors
-
2021 : Reliable Uncertainty Quantification of Deep Learning Models for a Free Electron Laser Scientific Facility »
Lipi Gupta · Aashwin Mishra · Auralee Edelen -
2022 : Neural Network Prior Mean for Particle Accelerator Injector Tuning »
Connie Xu · Ryan Roussel · Auralee Edelen -
2022 : Applications of Differentiable Physics Simulations in Particle Accelerator Modeling »
Ryan Roussel · Auralee Edelen -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2017 : Contributed talk 2: A Foray into Using Neural Network Control Policies For Rapid Switching Between Beam Parameters in a Free Electron Laser »
Auralee Edelen