Timezone: »
Symmetries and self-supervision in particle physics
Barry M Dillon · Tilman Plehn · Gregor Kasieczka
A long-standing problem in the design of machine-learning tools for particle physics applications has been how to incorporate prior knowledge of physical symmetries. In this note we propose contrastive self-supervision as a solution to this problem, with jet physics as an example. Using a permutation-invariant transformer network, we learn a representation which outperforms hand-crafted competitors on a linear classification benchmark.
Author Information
Barry M Dillon (University of Heidelberg)
Tilman Plehn (Heidelberg)
Gregor Kasieczka (Universität Hamburg)
More from the Same Authors
-
2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder -
2021 : Generative models for hadron shower simulation »
Sascha Diefenbacher · Erik Buhmann · Engin Eren · Frank Gaede · Daniel C. Hundhausen · Gregor Kasieczka · William Korcari · Katja Krueger · Peter McKeown · Lennart Rustige -
2021 : Stronger symbolic summary statistics for the LHC »
Nathalie Soybelman · Anja Butter · Tilman Plehn · Johann Brehmer