Timezone: »
Understanding the details of small-scale convection and storm formation is crucial to accurately represent the larger-scale planetary dynamics. Presently, atmospheric scientists run high-resolution, storm-resolving simulations to capture these kilometer-scale weather details. However, because they contain abundant information, these simulations can be overwhelming to analyze using conventional approaches. This paper takes a data-driven approach and jointly embeds spatial arrays of vertical wind velocities, temperatures, and water vapor information as three "channels" of a VAE architecture. Our "multi-channel VAE" results in more interpretable and robust latent structures than earlier work analyzing vertical velocities in isolation. Analyzing and clustering the VAE's latent space identifies weather patterns and their geographical manifestations in a fully unsupervised fashion. Our approach shows that VAEs can play essential roles in analyzing high-dimensional simulation data and extracting critical weather and climate characteristics.
Author Information
Harshini Mangipudi (University of California, Irvine)
Griffin Mooers (UC Irvine)
Mike Pritchard (University of California, Irvine)
Tom Beucler (University of California, Irvine)
Stephan Mandt (University of California, Irvine)
More from the Same Authors
-
2021 : Structured Stochastic Gradient MCMC: a hybrid VI and MCMC approach »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 : Probabilistic Querying of Continuous-Time Sequential Events »
Alex Boyd · Yuxin Chang · Stephan Mandt · Padhraic Smyth -
2022 : An Unsupervised Learning Perspective on the Dynamic Contribution to Extreme Precipitation Changes »
Griffin Mooers · Tom Beucler · Mike Pritchard · Stephan Mandt -
2022 : Q & A »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 Tutorial: Data Compression with Machine Learning »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 : Tutorial part 1 »
Yibo Yang · Karen Ullrich · Stephan Mandt -
2022 Poster: Predictive Querying for Autoregressive Neural Sequence Models »
Alex Boyd · Samuel Showalter · Stephan Mandt · Padhraic Smyth -
2021 Poster: Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning »
Aodong Li · Alex Boyd · Padhraic Smyth · Stephan Mandt -
2020 : Q/A and Discussion for ML Theory Session »
Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu -
2020 : Stephan Mandt »
Stephan Mandt -
2020 : Q/A and Discussion for Atmosphere Session »
Tom Beucler · Mike Pritchard · Elizabeth A. Barnes -
2020 : Michael Pritchard »
Mike Pritchard -
2020 : Atmosphere »
Tom Beucler -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar