`

Timezone: »

 
Crystal graph convolutional neural networks for per-site property prediction
Jessica Karaguesian · Jaclyn Lunger · Rafael Gomez-Bombarelli

Graph convolutional neural networks (GCNNs) have been shown to accurately predict materials properties by featurizing local atomic environments. However, such models have not yet been utilized for predicting per-site features such as Bader charge, magnetic moment, or site-projected band centers. In this work, we develop a per-site crystal graph convolutional neural network that predicts a wide array of per-site properties. This model outperforms a per-element average baseline, and is thus capturing the effect of the neighborhood around each atom. Using magnetic moments as a case study, we explore an example of underlying physics the per-site model is able to learn.

Author Information

Jessica Karaguesian (Massachusetts Institute of Technology)
Jaclyn Lunger (MIT)
Rafael Gomez-Bombarelli (Massachusetts Institute of Technology)

More from the Same Authors

  • 2017 : Poster session 1 »
    Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Thomas Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafael Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li
  • 2017 : Poster spotlights »
    Emma Strubell · Garrett Goh · Masashi Tsubaki · Théophile Gaudin · Philippe Schwaller · Matthew Ragoza · Rafael Gomez-Bombarelli
  • 2015 Poster: Convolutional Networks on Graphs for Learning Molecular Fingerprints »
    David Duvenaud · Dougal Maclaurin · Jorge Iparraguirre · Rafael Bombarell · Timothy Hirzel · Alan Aspuru-Guzik · Ryan Adams