Timezone: »
Computational fluid dynamics (CFD) is an invaluable tool in modern physics but the time-intensity and computational complexity limit its applicability to practical problems, e.g. in medicine. Surrogate methods could speed up inference and allow use in such time-critical applications. We consider the problem of estimating hemodynamic quantities (i.e. related to blood flow) on the surface of 3D artery geometries and employ anisotropic graph convolution in an end-to-end SO(3)-equivariant neural network operating directly on the polygonal surface mesh. We show that our network can accurately predict hemodynamic vectors for each vertex on the surface mesh with normalised mean absolute error of 0.6 [%] and approximation accuracy of 90.5 [%], demonstrating its feasibility as surrogate method for CFD.
Author Information
Julian Suk (University of Twente)
Phillip Lippe (University of Amsterdam)
Christoph Brune (University of Twente)
Jelmer Wolterink (University of Twente)
More from the Same Authors
-
2022 : Frequency Shortcut Learning in Neural Networks »
Shunxin Wang · Raymond Veldhuis · Christoph Brune · Nicola Strisciuglio -
2022 : Surfing on the Neural Sheaf »
Julian Suk · Lorenzo Giusti · Tamir Hemo · Miguel Lopez · Marco La Vecchia · Konstantinos Barmpas · Cristian Bodnar -
2023 Poster: Rotating Features for Object Discovery »
Sindy Löwe · Phillip Lippe · Francesco Locatello · Max Welling -
2023 Poster: PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers »
Phillip Lippe · Bas Veeling · Paris Perdikaris · Richard Turner · Johannes Brandstetter -
2023 Oral: Rotating Features for Object Discovery »
Sindy Löwe · Phillip Lippe · Francesco Locatello · Max Welling -
2022 Poster: Weakly supervised causal representation learning »
Johann Brehmer · Pim de Haan · Phillip Lippe · Taco Cohen