Timezone: »
There is increasing interest in understanding similarities and differences between convolutional neural networks (CNNs) and the visual cortex. A common approach is to use features extracted from intermediate CNN layers to fit brain encoding models. Each brain region is then typically associated with the best predicting layer. However, this winner-take-all mapping is non-robust, because consecutive CNN layers are strongly correlated and have similar prediction accuracies. Moreover, the winner-take-all approach ignores potential complementarities between layers to predict brain activity. To address this issue, we propose to fit a joint model on all layers simultaneously. The model is fit with banded ridge regression, grouping features by layer, and learning a separate regularization hyperparameter per feature space. By performing a selection over layers, this model effectively removes non-predictive or redundant layers and disentangles the contributions of each layer on each voxel. This model leads to increased prediction accuracy and to finer mappings of layer selectivity.
Author Information
Tom Dupre la Tour (UC Berkeley)
Michael Lu
Michael Eickenberg (Flatiron Institute)
Jack Gallant (University of California)
More from the Same Authors
-
2022 Poster: Benchopt: Reproducible, efficient and collaborative optimization benchmarks »
Thomas Moreau · Mathurin Massias · Alexandre Gramfort · Pierre Ablin · Pierre-Antoine Bannier · Benjamin Charlier · Mathieu Dagréou · Tom Dupre la Tour · Ghislain DURIF · Cassio F. Dantas · Quentin Klopfenstein · Johan Larsson · En Lai · Tanguy Lefort · Benoît Malézieux · Badr MOUFAD · Binh T. Nguyen · Alain Rakotomamonjy · Zaccharie Ramzi · Joseph Salmon · Samuel Vaiter -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : The interface between vision and language in the human brain? »
Jack Gallant -
2016 Demonstration: Automated simulation and replication of fMRI experiments »
Leila Wehbe · Alexander G Huth · Fatma Deniz · Marie-Luise Kieseler · Jack Gallant -
2015 Poster: Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data »
Danilo Bzdok · Michael Eickenberg · Olivier Grisel · Bertrand Thirion · Gael Varoquaux -
2008 Poster: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Spotlight: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant