Timezone: »
Structure learning for tensor network (TN) representation is to select the optimal network for TN contraction to fit a tensor. In the existing literature and view of many tensor researchers, this task is widely considered as the same to learning tensor network (model) ranks. In the manuscript, we briefly analyze the relation of these two critical tasks in a rigorous fashion, stating that rank minimization is actually a subtopic of the structure learning for TN, where the graph essence of TN structures is ignored in rank minimization. On one hand, we agree that the two tasks are identical to each other if the TN structure is not constrained on graph. We propose, on the other hand, an open problem called permutation learning in structure learning, i.e., learning the optimal matching between tensor modes and vertices in TN, to point out rank minimization would be failure in structure learning in this case, due to its limitation of exploring graph spaces. We last focus on permutation learning and give several preliminary results to help understand this open problem.
Author Information
Chao Li (RIKEN Center for Advanced Intelligence Project)
Qibin Zhao (RIKEN AIP)
More from the Same Authors
-
2021 : Bayesian Tensor Networks »
Kriton Konstantinidis · Yao Lei Xu · Qibin Zhao · Danilo Mandic -
2021 : Bayesian Latent Factor Model for Higher-order Data: an Extended Abstract »
Zerui Tao · Xuyang ZHAO · Toshihisa Tanaka · Qibin Zhao -
2021 : Fully-Connected Tensor Network Decomposition »
Yu-Bang Zheng · Ting-Zhu Huang · Xi-Le Zhao · Qibin Zhao · Tai-Xiang Jiang -
2022 Poster: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG »
Reinmar Kobler · Jun-ichiro Hirayama · Qibin Zhao · Motoaki Kawanabe -
2021 : Discussion Pannel »
Xiao-Yang Liu · Qibin Zhao · Chao Li · Guillaume Rabusseau -
2021 : Bayesian Tensor Networks »
Kriton Konstantinidis · Yao Lei Xu · Qibin Zhao · Danilo Mandic -
2021 Workshop: Second Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Ivan Oseledets · Yufei Ding · Guillaume Rabusseau · Jean Kossaifi · Khadijeh Najafi · Anwar Walid · Andrzej Cichocki · Masashi Sugiyama -
2020 : Contributed Talk 3: Paper 32: High-order Learning Model via Fractional Tensor Network Decomposition »
Chao Li -
2020 Workshop: First Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Jacob Biamonte · Cesar F Caiafa · Paul Pu Liang · Nadav Cohen · Stefan Leichenauer -
2019 Poster: Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling »
Ming Hou · Jiajia Tang · Jianhai Zhang · Wanzeng Kong · Qibin Zhao -
2011 Poster: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI -
2011 Spotlight: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI