Timezone: »
A prominent class of algorithms for solving regularized optimal transport problems is that of iterative Bregman projections (IBP). Among them, in the classical bi-marginal case, superior performance of Greenkhorn algorithm to Sinkhorn algorithm has been testified in several works. Here we prove global linear convergence of a new batch Greenkhorn algorithm for regularized multimarginal optimal transport, which processes at each iteration only a batch of components of a selected marginal. While the linear convergence is established for the famous example of cyclic IBP - the Sinkhorn algorithm, in general for IBP this question is open. Our framework of Batch Greenkhorn is general enough to cover, as special cases some existing algorithms in optimal transport like Greenkhorn algorithm for bi-marginal, and (greedy) MultiSinkhorn algorithm for multimarginal optimal transport, for which we provide explicit global linear convergence rates. Moreover, our results highlight the critical role played by the batch size in accelerating the convergence of the algorithm.
Author Information
Vladimir Kostic (Istituto Italiano di Tecnologia)
Saverio Salzo (Istituto Italiano di Tecnologia)
Massimiliano Pontil (IIT & UCL)
More from the Same Authors
-
2022 Poster: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2023 Poster: Sharp Spectral Rates for Koopman Operator Learning »
Vladimir Kostic · Karim Lounici · Pietro Novelli · Massimiliano Pontil -
2023 Poster: Estimating Koopman operators with sketching to provably learn large scale dynamical systems »
Giacomo Meanti · Antoine Chatalic · Vladimir Kostic · Pietro Novelli · Massimiliano Pontil · Lorenzo Rosasco -
2023 Poster: Transfer learning for atomistic simulations using GNNs and kernel mean embeddings »
John Falk · Luigi Bonati · Pietro Novelli · Michele Parrinello · Massimiliano Pontil -
2023 Poster: Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-Start »
Riccardo Grazzi · Massimiliano Pontil · Saverio Salzo -
2022 Spotlight: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Spotlight: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov -
2022 Poster: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov -
2022 Poster: Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces »
Vladimir Kostic · Pietro Novelli · Andreas Maurer · Carlo Ciliberto · Lorenzo Rosasco · Massimiliano Pontil -
2022 Poster: Group Meritocratic Fairness in Linear Contextual Bandits »
Riccardo Grazzi · Arya Akhavan · John IF Falk · Leonardo Cella · Massimiliano Pontil -
2021 Poster: Concentration inequalities under sub-Gaussian and sub-exponential conditions »
Andreas Maurer · Massimiliano Pontil -
2021 Poster: A Gang of Adversarial Bandits »
Mark Herbster · Stephen Pasteris · Fabio Vitale · Massimiliano Pontil -
2021 Poster: The Role of Global Labels in Few-Shot Classification and How to Infer Them »
Ruohan Wang · Massimiliano Pontil · Carlo Ciliberto -
2021 Poster: Distributed Zero-Order Optimization under Adversarial Noise »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 Poster: Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning »
Luca Oneto · Michele Donini · Giulia Luise · Carlo Ciliberto · Andreas Maurer · Massimiliano Pontil -
2020 Poster: Fair regression with Wasserstein barycenters »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Oral: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2019 Spotlight: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Bilevel learning of the Group Lasso structure »
Jordan Frecon · Saverio Salzo · Massimiliano Pontil -
2018 Spotlight: Bilevel learning of the Group Lasso structure »
Jordan Frecon · Saverio Salzo · Massimiliano Pontil -
2018 Poster: Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance »
Giulia Luise · Alessandro Rudi · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil