Timezone: »
Neural bandits have enabled practitioners to operate efficiently on problems with non-linear reward functions. While in general contextual bandits commonly utilize Gaussian process (GP) predictive distributions for decision making, the most successful neural variants use only the last layer parameters in the derivation. Research on neural kernels (NK) has recently established a correspondence between deep networks and GPs that take into account all the parameters of a NN and can be trained more efficiently than most Bayesian NNs. We propose to directly apply NK-induced distributions to guide an upper confidence bound or Thompson sampling-based policy. We show that NK bandits achieve state-of-the-art performance on highly non-linear structured data. Furthermore, we analyze practical considerations such as training frequency and model partitioning. We believe our work will help better understand the impact of utilizing NKs in applied settings.
Author Information
Michal Lisicki (University of Guelph)
Arash Afkanpour (Google)
Graham Taylor (University of Guelph / Vector Institute)
More from the Same Authors
-
2020 : Building LEGO using Deep Generative Models of Graphs »
Rylee Thompson · Graham Taylor · Terrance DeVries · Elahe Ghalebi -
2023 Poster: A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect Dataset »
Zahra Gharaee · ZeMing Gong · Nicholas Pellegrino · Iuliia Zarubiieva · Joakim Haurum · Scott Lowe · Jaclyn McKeown · Chris Ho · Joschka McLeod · Yi-Yun Wei · Jireh Agda · Sujeevan Ratnasingham · Dirk Steinke · Angel Chang · Graham Taylor · Paul Fieguth -
2021 : DeepRNG: Towards Deep Reinforcement Learning-Assisted Generative Testing of Software »
Chuan-Yung Tsai · Graham Taylor -
2021 : Neural Structure Mapping For Learning Abstract Visual Analogies »
Shashank Shekhar · Graham Taylor -
2021 Poster: Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning »
Hyunsoo Chung · Jungtaek Kim · Boris Knyazev · Jinhwi Lee · Graham Taylor · Jaesik Park · Minsu Cho -
2021 Poster: Parameter Prediction for Unseen Deep Architectures »
Boris Knyazev · Michal Drozdzal · Graham Taylor · Adriana Romero Soriano -
2020 Poster: Instance Selection for GANs »
Terrance DeVries · Michal Drozdzal · Graham Taylor -
2020 Session: Orals & Spotlights Track 08: Deep Learning »
Graham Taylor · Mario Lucic -
2019 Poster: Understanding Attention and Generalization in Graph Neural Networks »
Boris Knyazev · Graham Taylor · Mohamed Amer -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2015 : Learning Multi-scale Temporal Dynamics with Recurrent Neural Networks »
Graham Taylor -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines »
Matthew D Zeiler · Graham Taylor · Leonid Sigal · Iain Matthews · Rob Fergus -
2010 Poster: Pose-Sensitive Embedding by Nonlinear NCA Regression »
Graham Taylor · Rob Fergus · George Williams · Ian Spiro · Christoph Bregler -
2008 Poster: The Recurrent Temporal Restricted Boltzmann Machine »
Ilya Sutskever · Geoffrey E Hinton · Graham Taylor -
2006 Poster: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis -
2006 Spotlight: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis