Timezone: »
In anomaly detection (AD), one seeks to identify whether a test sample is abnormal, given a data set of normal samples. A recent and promising approach to AD relies on deep generative models, such as variational autoencoders (VAEs), for unsupervised learning of the normal data distribution. In semi-supervised AD (SSAD), the data also includes a small sample of labeled anomalies. In this work, we propose two variational methods for training VAEs for SSAD. The intuitive idea in both methods is to train the encoder to `separate' between latent vectors for normal and outlier data. We show that this idea can be derived from principled probabilistic formulations of the problem, and propose simple and effective algorithms. Our methods can be applied to various data types, as we demonstrate on SSAD datasets ranging from natural images to astronomy and medicine, can be combined with any VAE model architecture, and are naturally compatible with ensembling. When comparing to state-of-the-art SSAD methods that are not specific to particular data types, we obtain marked improvement in outlier detection.
Author Information
Tal Daniel (Technion)
Thanard Kurutach (University of California Berkeley)
Aviv Tamar (Technion)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Deep Variational Semi-Supervised Novelty Detection »
Dates n/a. Room
More from the Same Authors
-
2022 : Learning Control by Iterative Inversion »
Gal Leibovich · Guy Jacob · Or Avner · Gal Novik · Aviv Tamar -
2023 Poster: Explore to Generalize in Zero-Shot RL »
Ev Zisselman · Itai Lavie · Daniel Soudry · Aviv Tamar -
2023 Workshop: Generalization in Planning (GenPlan '23) »
Pulkit Verma · Siddharth Srivastava · Aviv Tamar · Felipe Trevizan -
2022 Poster: Meta Reinforcement Learning with Finite Training Tasks - a Density Estimation Approach »
Zohar Rimon · Aviv Tamar · Gilad Adler -
2021 Poster: Offline Meta Reinforcement Learning -- Identifiability Challenges and Effective Data Collection Strategies »
Ron Dorfman · Idan Shenfeld · Aviv Tamar -
2021 Poster: Mastering Atari Games with Limited Data »
Weirui Ye · Shaohuai Liu · Thanard Kurutach · Pieter Abbeel · Yang Gao -
2020 : Mini-panel discussion 1 - Bridging the gap between theory and practice »
Aviv Tamar · Emma Brunskill · Jost Tobias Springenberg · Omer Gottesman · Daniel Mankowitz -
2020 : Keynote: Aviv Tamar »
Aviv Tamar -
2020 Poster: Trajectory-wise Multiple Choice Learning for Dynamics Generalization in Reinforcement Learning »
Younggyo Seo · Kimin Lee · Ignasi Clavera Gilaberte · Thanard Kurutach · Jinwoo Shin · Pieter Abbeel -
2020 Poster: Sparse Graphical Memory for Robust Planning »
Scott Emmons · Ajay Jain · Misha Laskin · Thanard Kurutach · Pieter Abbeel · Deepak Pathak -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · RaphaĆ«l Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2018 Poster: Learning Plannable Representations with Causal InfoGAN »
Thanard Kurutach · Aviv Tamar · Ge Yang · Stuart Russell · Pieter Abbeel -
2017 Poster: Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments »
Ryan Lowe · YI WU · Aviv Tamar · Jean Harb · OpenAI Pieter Abbeel · Igor Mordatch