Timezone: »

Unsupervised Learning of Temporal Abstractions using Slot-based Transformers
Anand Gopalakrishnan · Kazuki Irie · Jürgen Schmidhuber · Sjoerd van Steenkiste

The discovery of reusable sub-routines simplifies decision-making and planning in complex reinforcement learning problems. Previous approaches propose to learn such temporal abstractions in a purely unsupervised fashion through observing state-action trajectories gathered from executing a policy. However, a current limitation is that they process each trajectory in an entirely sequential manner, which prevents them from revising earlier decisions about sub-routine boundary points in light of new incoming information. In this work we propose SloTTAr, a fully parallel approach that integrates sequence processing Transformers with a Slot Attention module for learning about sub-routines in an unsupervised fashion. We demonstrate how SloTTAr is capable of outperforming strong baselines in terms of boundary point discovery, while being up to 30x faster on existing benchmarks.

Author Information

Anand Gopalakrishnan (The Swiss AI Lab (IDSIA))
Kazuki Irie (IDSIA)
Jürgen Schmidhuber (Swiss AI Lab, IDSIA (USI & SUPSI); NNAISENSE; KAUST)

Since age 15 or so, the main goal of professor Jürgen Schmidhuber has been to build a self-improving Artificial Intelligence (AI) smarter than himself, then retire. His lab's Deep Learning Neural Networks based on ideas published in the "Annus Mirabilis" 1990-1991 have revolutionised machine learning and AI. By the mid 2010s, they were on 3 billion devices, and used billions of times per day through users of the world's most valuable public companies, e.g., for greatly improved (CTC-LSTM-based) speech recognition on all Android phones, greatly improved machine translation through Google Translate and Facebook (over 4 billion LSTM-based translations per day), Apple's Siri and Quicktype on all iPhones, the answers of Amazon's Alexa, and numerous other applications. In 2011, his team was the first to win official computer vision contests through deep neural nets, with superhuman performance. In 2012, they had the first deep NN to win a medical imaging contest (on cancer detection). All of this attracted enormous interest from industry. His research group also established the fields of mathematically rigorous universal AI and recursive self-improvement in metalearning machines that learn to learn (since 1987). In 1990, he introduced unsupervised adversarial neural networks that fight each other in a minimax game to achieve artificial curiosity (GANs are a special case). In 1991, he introduced very deep learning through unsupervised pre-training, and neural fast weight programmers formally equivalent to what's now called linear Transformers. His formal theory of creativity & curiosity & fun explains art, science, music, and humor. He also generalized algorithmic information theory and the many-worlds theory of physics, and introduced the concept of Low-Complexity Art, the information age's extreme form of minimal art. He is recipient of numerous awards, author of over 350 peer-reviewed papers, and Chief Scientist of the company NNAISENSE, which aims at building the first practical general purpose AI. He is a frequent keynote speaker, and advising various governments on AI strategies.

Sjoerd van Steenkiste (Google Research)

More from the Same Authors