Timezone: »
When reasoning about strategic behavior in a machine learning context it is tempting to combine standard microfoundations of rational agents with the statistical decision theory underlying classification. In this work, we argue that a direct combination of these standard ingredients leads to brittle solution concepts of limited descriptive and prescriptive value. First, we show that rational agents with perfect information produce discontinuities in the aggregate response to a decision rule that we often do not observe empirically. Second, when any positive fraction of agents is not perfectly strategic, desirable stable points---where the classifier is optimal for the data it entails---cease to exist. Third, optimal decision rules under standard microfoundations maximize a measure of negative externality known as social burden within a broad class of possible assumptions about agent behavior.Recognizing these limitations we explore alternatives to standard microfoundations for binary classification. To navigate the space of possible assumptions about how agents respond to a decision rule we specify a set of desiderata our model should satisfy and that help mitigate the limitations of the standard model. We propose noisy response as a promising candidate model. Inspired by smoothed analysis and empirical observations, noisy response incorporates natural imperfection in the agent responses. This model retains analytical tractability, leads to more robust insights about stable points, and imposes a lower social burden at optimality.
Author Information
Meena Jagadeesan (UC Berkeley)
Celestine Mendler-Dünner (Max Planck Institute for Intelligent Systems)
Moritz Hardt (University of California-Berkeley)
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 : Alternative Microfoundations for Strategic Classification »
Meena Jagadeesan · Celestine Mendler-Dünner · Moritz Hardt -
2022 : Causal Inference out of Control: Identifying the Steerability of Consumption »
Gary Cheng · Moritz Hardt · Celestine Mendler-Dünner -
2023 Poster: Supply-Side Equilibria in Recommender Systems »
Meena Jagadeesan · Nikhil Garg · Jacob Steinhardt -
2023 Poster: Collaborative Learning via Prediction Consensus »
Dongyang Fan · Celestine Mendler-Dünner · Martin Jaggi -
2023 Poster: Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition »
Meena Jagadeesan · Michael Jordan · Jacob Steinhardt · Nika Haghtalab -
2022 : Panel »
Meena Jagadeesan · Avrim Blum · Jon Kleinberg · Celestine Mendler-Dünner · Jennifer Wortman Vaughan · Chara Podimata -
2022 : Causal Inference out of Control: Identifying the Steerability of Consumption »
Gary Cheng · Moritz Hardt · Celestine Mendler-Dünner -
2022 Poster: Performative Power »
Moritz Hardt · Meena Jagadeesan · Celestine Mendler-Dünner -
2022 Poster: Anticipating Performativity by Predicting from Predictions »
Celestine Mendler-Dünner · Frances Ding · Yixin Wang -
2021 Workshop: Learning and Decision-Making with Strategic Feedback (StratML) »
Yahav Bechavod · Hoda Heidari · Eric Mazumdar · Celestine Mendler-Dünner · Tijana Zrnic -
2021 Poster: Test-time Collective Prediction »
Celestine Mendler-Dünner · Wenshuo Guo · Stephen Bates · Michael Jordan -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2020 Poster: Stochastic Optimization for Performative Prediction »
Celestine Mendler-Dünner · Juan Perdomo · Tijana Zrnic · Moritz Hardt -
2019 Poster: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2019 Spotlight: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2018 Poster: Snap ML: A Hierarchical Framework for Machine Learning »
Celestine Dünner · Thomas Parnell · Dimitrios Sarigiannis · Nikolas Ioannou · Andreea Anghel · Gummadi Ravi · Madhusudanan Kandasamy · Haralampos Pozidis -
2017 Poster: Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems »
Celestine Dünner · Thomas Parnell · Martin Jaggi