Timezone: »
Cooperation in settings where agents have both common and conflicting interests (mixed-motive environments) has recently received considerable attention in multi-agent learning. However, the mixed-motive environments typically studied have a single cooperative outcome on which all agents can agree. Many real-world multi-agent environments are instead bargaining problems (BPs): they have several Pareto-optimal payoff profiles over which agents have conflicting preferences. We argue that typical cooperation-inducing learning algorithms fail to cooperate in BPs when there is room for \textit{normative disagreement} resulting in the existence of multiple competing cooperative equilibria, and illustrate this problem empirically. To remedy the issue, we introduce the notion of \textit{norm-adaptive} policies. Norm-adaptive policies are capable of behaving according to different norms in different circumstances, creating opportunities for resolving normative disagreement. We develop a class of norm-adaptive policies and show in experiments that these significantly increase cooperation. However, norm-adaptiveness cannot address residual bargaining failure arising from a fundamental tradeoff between exploitability and cooperative robustness.
Author Information
Julian Stastny (University of Tuebingen)
Maxime Riché (Center on Long-Term Risk)
Aleksandr Lyzhov (New York University)
Johannes Treutlein (University of Toronto)
Allan Dafoe (Centre for the Governance of AI)
Jesse Clifton
More from the Same Authors
-
2021 : Normative disagreement as a challenge for Cooperative AI »
Julian Stastny · Maxime Riché · Aleksandr Lyzhov · Johannes Treutlein · Allan Dafoe · Jesse Clifton -
2021 : Normative disagreement as a challenge for Cooperative AI »
Julian Stastny · Maxime Riché · Aleksandr Lyzhov · Johannes Treutlein · Allan Dafoe · Jesse Clifton -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2021 : (Live) Panel Discussion: Cooperative AI »
Kalesha Bullard · Allan Dafoe · Fei Fang · Chris Amato · Elizabeth M. Adams -
2020 : Q&A: Open Problems in Cooperative AI with Thore Graepel (DeepMind), Allan Dafoe (University of Oxford), Yoram Bachrach (DeepMind), and Natasha Jaques (Google) [moderator] »
Thore Graepel · Yoram Bachrach · Allan Dafoe · Natasha Jaques -
2020 : Open Problems in Cooperative AI: Thore Graepel (DeepMind) and Allan Dafoe (University of Oxford) »
Thore Graepel · Allan Dafoe -
2020 Workshop: Cooperative AI »
Thore Graepel · Dario Amodei · Vincent Conitzer · Allan Dafoe · Gillian Hadfield · Eric Horvitz · Sarit Kraus · Kate Larson · Yoram Bachrach