Timezone: »
Exploration and Incentives in Reinforcement Learning
Max Simchowitz · Aleksandrs Slivkins
Event URL: https://openreview.net/forum?id=s41rrth5zHd »
How do you incentivize self-interested agents to $\text{\emph{explore}}$ when they prefer to $\text{\emph{exploit}}$? We consider complex exploration problems, where each agent faces the same (but unknown) MDP. In contrast with traditional formulations of reinforcement learning, agents control the choice of policies, whereas an algorithm can only issue recommendations. However, the algorithm controls the flow of information, and can incentivize the agents to explore via information asymmetry. We design an algorithm which explores all reachable states in the MDP. We achieve provable guarantees similar to those for incentivizing exploration in static, stateless exploration problems studied previously.
How do you incentivize self-interested agents to $\text{\emph{explore}}$ when they prefer to $\text{\emph{exploit}}$? We consider complex exploration problems, where each agent faces the same (but unknown) MDP. In contrast with traditional formulations of reinforcement learning, agents control the choice of policies, whereas an algorithm can only issue recommendations. However, the algorithm controls the flow of information, and can incentivize the agents to explore via information asymmetry. We design an algorithm which explores all reachable states in the MDP. We achieve provable guarantees similar to those for incentivizing exploration in static, stateless exploration problems studied previously.
Author Information
Max Simchowitz (MIT)
Aleksandrs Slivkins (Microsoft Research NYC)
More from the Same Authors
-
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 : The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and Sample Complexity »
Mark Sellke · Aleksandrs Slivkins -
2021 : The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and Sample Complexity »
Mark Sellke · Aleksandrs Slivkins -
2022 : Learning to Extrapolate: A Transductive Approach »
Aviv Netanyahu · Abhishek Gupta · Max Simchowitz · Kaiqing Zhang · Pulkit Agrawal -
2023 Poster: Bandit Social Learning under Myopic Behavior »
Kiarash Banihashem · MohammadTaghi Hajiaghayi · Suho Shin · Aleksandrs Slivkins -
2022 Poster: Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions »
Adam Block · Max Simchowitz -
2022 Poster: Globally Convergent Policy Search for Output Estimation »
Jack Umenberger · Max Simchowitz · Juan Perdomo · Kaiqing Zhang · Russ Tedrake -
2022 Poster: Incentivizing Combinatorial Bandit Exploration »
Xinyan Hu · Dung Ngo · Aleksandrs Slivkins · Steven Wu -
2021 : Spotlight 1: Exploration and Incentives in Reinforcement Learning »
Max Simchowitz · Aleksandrs Slivkins -
2021 Poster: Online Control of Unknown Time-Varying Dynamical Systems »
Edgar Minasyan · Paula Gradu · Max Simchowitz · Elad Hazan -
2021 Poster: Stabilizing Dynamical Systems via Policy Gradient Methods »
Juan Perdomo · Jack Umenberger · Max Simchowitz -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 Poster: Bandits with Knapsacks beyond the Worst Case »
Karthik Abinav Sankararaman · Aleksandrs Slivkins -
2020 Poster: Making Non-Stochastic Control (Almost) as Easy as Stochastic »
Max Simchowitz -
2020 Poster: Efficient Contextual Bandits with Continuous Actions »
Maryam Majzoubi · Chicheng Zhang · Rajan Chari · Akshay Krishnamurthy · John Langford · Aleksandrs Slivkins -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: Constrained episodic reinforcement learning in concave-convex and knapsack settings »
Kianté Brantley · Miro Dudik · Thodoris Lykouris · Sobhan Miryoosefi · Max Simchowitz · Aleksandrs Slivkins · Wen Sun -
2019 Poster: Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs »
Max Simchowitz · Kevin Jamieson -
2017 : The Unfair Externalities of Exploration »
Aleksandrs Slivkins · Jennifer Wortman Vaughan -
2011 Poster: Multi-armed bandits on implicit metric spaces »
Aleksandrs Slivkins -
2009 Poster: Adapting to the Shifting Intent of Search Queries »
Umar Syed · Aleksandrs Slivkins · Nina Mishra