Timezone: »

Trustworthy and Socially Responsible Machine Learning
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li

Fri Dec 09 06:45 AM -- 04:15 PM (PST) @ Virtual
Event URL: https://tsrml2022.github.io/ »

To address these negative societal impacts of ML, researchers have looked into different principles and constraints to ensure trustworthy and socially responsible machine learning systems. This workshop makes the first attempt towards bridging the gap between security, privacy, fairness, ethics, game theory, and machine learning communities and aims to discuss the principles and experiences of developing trustworthy and socially responsible machine learning systems. The workshop also focuses on how future researchers and practitioners should prepare themselves for reducing the risks of unintended behaviors of sophisticated ML models.

This workshop aims to bring together researchers interested in the emerging and interdisciplinary field of trustworthy and socially responsible machine learning from a broad range of disciplines with different perspectives to this problem. We attempt to highlight recent related work from different communities, clarify the foundations of trustworthy machine learning, and chart out important directions for future work and cross-community collaborations.

Author Information

Huan Zhang (CMU)
Linyi Li (University of Illinois Urbana-Champaign)

A Ph.D. candidate working on robust machine learning and verification.

Chaowei Xiao (ASU/NVIDIA)

I am Chaowei Xiao, a third year PhD student in CSE Department, University of Michigan, Ann Arbor. My advisor is Professor Mingyan Liu . I obtained my bachelor's degree in School of Software from Tsinghua University in 2015, advised by Professor Yunhao Liu, Professor Zheng Yang and Dr. Lei Yang. I was also a visiting student at UC Berkeley in 2018, advised by Professor Dawn Song and Professor Bo Li. My research interest includes adversarial machine learning.

J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)

Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.

Anima Anandkumar (NVIDIA / Caltech)
Bo Li (UIUC)

More from the Same Authors