Timezone: »
The study of first-order optimization is sensitive to the assumptions made on the objective functions.These assumptions induce complexity classes which play a key role in worst-case analysis, includingthe fundamental concept of algorithm optimality. Recent work argues that strong convexity andsmoothness—popular assumptions in literature—lead to a pathological definition of the conditionnumber. Motivated by this result, we focus on the class of functionssatisfying a lower restricted secant inequality and an upper error bound. On top of being robust tothe aforementioned pathological behavior and including some non-convex functions, this pair ofconditions displays interesting geometrical properties. In particular, the necessary and sufficientconditions to interpolate a set of points and their gradients within the class can be separated intosimple conditions on each sampled gradient. This allows the performance estimation problem (PEP) to be solved analytically, leading to a lower boundon the convergence rate that proves gradient descent to be exactly optimal on this class of functionsamong all first-order algorithms.
Author Information
Charles Guille-Escuret (Université de Montréal, Mila)
Adam Ibrahim (Mila)
Baptiste Goujaud (Ecole Polytechnique)
Ioannis Mitliagkas (University of Montreal)
More from the Same Authors
-
2022 : Neural Networks Efficiently Learn Low-Dimensional Representations with SGD »
Alireza Mousavi-Hosseini · Sejun Park · Manuela Girotti · Ioannis Mitliagkas · Murat Erdogdu -
2022 : Quadratic minimization: from conjugate gradients to an adaptive heavy-ball method with Polyak step-sizes »
Baptiste Goujaud · Adrien Taylor · Aymeric Dieuleveut -
2022 : Performative Prediction with Neural Networks »
Mehrnaz Mofakhami · Ioannis Mitliagkas · Gauthier Gidel -
2022 : Empirical Study on Optimizer Selection for Out-of-Distribution Generalization »
Hiroki Naganuma · Kartik Ahuja · Ioannis Mitliagkas · Shiro Takagi · Tetsuya Motokawa · Rio Yokota · Kohta Ishikawa · Ikuro Sato -
2022 : A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods »
Tiago Salvador · Kilian FATRAS · Ioannis Mitliagkas · Adam Oberman -
2022 : A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · J. Zico Kolter · Nicolas Loizou · Marc Lanctot · Ioannis Mitliagkas · Noam Brown · Christian Kroer -
2023 Poster: Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation »
Sébastien Lachapelle · Divyat Mahajan · Ioannis Mitliagkas · Simon Lacoste-Julien -
2023 Poster: CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning »
Charles Guille-Escuret · Pau Rodriguez · David Vazquez · Ioannis Mitliagkas · Joao Monteiro -
2023 Oral: Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation »
Sébastien Lachapelle · Divyat Mahajan · Ioannis Mitliagkas · Simon Lacoste-Julien -
2023 Competition: NeurIPS 2023 Machine Unlearning Competition »
Eleni Triantafillou · Fabian Pedregosa · Meghdad Kurmanji · Kairan ZHAO · Gintare Karolina Dziugaite · Peter Triantafillou · Ioannis Mitliagkas · Vincent Dumoulin · Lisheng Sun · Peter Kairouz · Julio C Jacques Junior · Jun Wan · Sergio Escalera · Isabelle Guyon -
2020 : Contributed talks in Session 4 (Zoom) »
Quanquan Gu · sanae lotfi · Charles Guille-Escuret · Tolga Ergen · Dongruo Zhou -
2020 : Contributed Video: A Study of Condition Numbers for First-Order Optimization, Charles Guille-Escuret »
Charles Guille-Escuret -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2019 Workshop: Bridging Game Theory and Deep Learning »
Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien -
2019 Poster: Gradient based sample selection for online continual learning »
Rahaf Aljundi · Min Lin · Baptiste Goujaud · Yoshua Bengio -
2019 Poster: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2019 Spotlight: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux