Timezone: »
Many applications of text generation require incorporating different constraints to control the semantics or style of generated text. These constraints can be hard (e.g., ensuring certain keywords are included in the output) and soft (e.g., contextualizing the output with the left- or right-hand context). In this paper, we present Energy-based Constrained Decoding with Langevin Dynamics (COLD), a decoding framework which unifies constrained generation as specifying constraints through an energy function, then performing efficient differentiable reasoning over the constraints through gradient-based sampling. COLD decoding is a flexible framework that can be applied directly to off-the-shelf left-to-right language models without the need for any task-specific fine-tuning, as demonstrated through three challenging text generation applications: lexically-constrained generation, abductive reasoning, and counterfactual reasoning. Our experiments on these constrained generation tasks point to the effectiveness of our approach, both in terms of automatic and human evaluation.
Author Information
Lianhui Qin (University of Washington)
Sean Welleck (University of Washington)
Daniel Khashabi (Johns Hopkins University)
Yejin Choi (University of Washington)
More from the Same Authors
-
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 : Towards Grounded Natural Language Proof Generation »
Sean Welleck · Jiacheng Liu · Yejin Choi -
2022 : Information-Theoretic Evaluation of Free-Text Rationales with Conditional $\mathcal{V}$-Information »
Hanjie Chen · Faeze Brahman · Xiang Ren · Yangfeng Ji · Yejin Choi · Swabha Swayamdipta -
2023 Workshop: Instruction Tuning and Instruction Following »
Qinyuan Ye · Yizhong Wang · Shayne Longpre · Yao Fu · Daniel Khashabi -
2023 Workshop: MATH-AI: The 3rd Workshop on Mathematical Reasoning and AI »
Zhenwen Liang · Albert Q. Jiang · Katie Collins · Pan Lu · Kaiyu Yang · Sean Welleck · James McClelland -
2023 Workshop: AI meets Moral Philosophy and Moral Psychology: An Interdisciplinary Dialogue about Computational Ethics »
Sydney Levine · Liwei Jiang · Jared Moore · Zhijing Jin · Yejin Choi -
2022 Workshop: MATH-AI: Toward Human-Level Mathematical Reasoning »
Pan Lu · Swaroop Mishra · Sean Welleck · Yuhuai Wu · Hannaneh Hajishirzi · Percy Liang -
2022 Poster: QUARK: Controllable Text Generation with Reinforced Unlearning »
Ximing Lu · Sean Welleck · Jack Hessel · Liwei Jiang · Lianhui Qin · Peter West · Prithviraj Ammanabrolu · Yejin Choi -
2022 Poster: NaturalProver: Grounded Mathematical Proof Generation with Language Models »
Sean Welleck · Jiacheng Liu · Ximing Lu · Hannaneh Hajishirzi · Yejin Choi -
2021 Workshop: Math AI for Education (MATHAI4ED): Bridging the Gap Between Research and Smart Education »
Pan Lu · Yuhuai Wu · Sean Welleck · Xiaodan Liang · Eric Xing · James McClelland -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 : Battling with Larger Models through Grounding and Searching »
Yejin Choi -
2021 Oral: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: MERLOT: Multimodal Neural Script Knowledge Models »
Rowan Zellers · Ximing Lu · Jack Hessel · Youngjae Yu · Jae Sung Park · Jize Cao · Ali Farhadi · Yejin Choi -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Yejin Choi »
Yejin Choi -
2020 : Invited Talk: Yejin Choi »
Yejin Choi -
2020 : Adversarial, Socially Aware, and Commonsensical Data »
Yejin Choi -
2019 : Invited Talk (Yejin Choi) »
Yejin Choi -
2019 : Yejin Choi »
Yejin Choi -
2019 Poster: Defending Against Neural Fake News »
Rowan Zellers · Ari Holtzman · Hannah Rashkin · Yonatan Bisk · Ali Farhadi · Franziska Roesner · Yejin Choi -
2018 Poster: Loss Functions for Multiset Prediction »
Sean Welleck · Zixin Yao · Yu Gai · Jialin Mao · Zheng Zhang · Kyunghyun Cho -
2017 Poster: Saliency-based Sequential Image Attention with Multiset Prediction »
Sean Welleck · Jialin Mao · Kyunghyun Cho · Zheng Zhang