Timezone: »
With the advent and increasing consolidation of e-commerce, digital advertising has very recently replaced traditional advertising as the main marketing force in the economy. In the past four years, a particularly important development in the digital advertising industry is the shift from second-price auctions to first-price auctions for online display ads. This shift immediately motivated the intellectually challenging question of how to bid in first-price auctions, because unlike in second-price auctions, bidding one's private value truthfully is no longer optimal. Following a series of recent works in this area, we consider a differentiated setup: we do not make any assumption about other bidders' maximum bid (i.e. it can be adversarial over time), and instead assume that we have access to a hint that serves as a prediction of other bidders' maximum bid, where the prediction is learned through some blackbox machine learning model. We consider two types of hints: one where a single point-prediction is available, and the other where a hint interval (representing a type of confidence region into which others' maximum bid falls) is available. We establish minimax optimal regret bounds for both cases and highlight the quantitatively different behavior between the two settings. We also provide improved regret bounds when the others' maximum bid exhibits the further structure of sparsity. Finally, we complement the theoretical results with demonstrations using real bidding data.
Author Information
Wei Zhang (Massachusetts Institute of Technology)
Yanjun Han (Massachusetts Institute of Technology)
Zhengyuan Zhou (Arena Technologies & NYU)
Aaron Flores
Tsachy Weissman (Stanford University)
More from the Same Authors
-
2023 Poster: Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation »
Berivan Isik · Wei-Ning Chen · Ayfer Ozgur · Tsachy Weissman · Albert No -
2022 Spotlight: Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions »
Wei Zhang · Yanjun Han · Zhengyuan Zhou · Aaron Flores · Tsachy Weissman -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 : Efficient Federated Random Subnetwork Training »
Francesco Pase · Berivan Isik · Deniz Gunduz · Tsachy Weissman · Michele Zorzi -
2022 Poster: Oracle-Efficient Online Learning for Smoothed Adversaries »
Nika Haghtalab · Yanjun Han · Abhishek Shetty · Kunhe Yang -
2022 Poster: Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits »
Yifei Wang · Tavor Baharav · Yanjun Han · Jiantao Jiao · David Tse -
2022 Poster: Society of Agents: Regret Bounds of Concurrent Thompson Sampling »
Yan Chen · Perry Dong · Qinxun Bai · Maria Dimakopoulou · Wei Xu · Zhengyuan Zhou -
2021 Poster: Online Multi-Armed Bandits with Adaptive Inference »
Maria Dimakopoulou · Zhimei Ren · Zhengyuan Zhou -
2019 Workshop: Information Theory and Machine Learning »
Shengjia Zhao · Jiaming Song · Yanjun Han · Kristy Choi · Pratyusha Kalluri · Ben Poole · Alex Dimakis · Jiantao Jiao · Tsachy Weissman · Stefano Ermon -
2018 Poster: Entropy Rate Estimation for Markov Chains with Large State Space »
Yanjun Han · Jiantao Jiao · Chuan-Zheng Lee · Tsachy Weissman · Yihong Wu · Tiancheng Yu -
2018 Spotlight: Entropy Rate Estimation for Markov Chains with Large State Space »
Yanjun Han · Jiantao Jiao · Chuan-Zheng Lee · Tsachy Weissman · Yihong Wu · Tiancheng Yu -
2013 Poster: Simultaneous Rectification and Alignment via Robust Recovery of Low-rank Tensors »
Xiaoqin Zhang · Di Wang · Zhengyuan Zhou · Yi Ma