Timezone: »
Column Generation (CG) is an iterative algorithm for solving linear programs (LPs) with an extremely large number of variables (columns). CG is the workhorse for tackling large-scale integer linear programs, which rely on CG to solve LP relaxations within a branch and bound algorithm. Two canonical applications are the Cutting Stock Problem (CSP) and Vehicle Routing Problem with Time Windows (VRPTW). In VRPTW, for example, each binary variable represents the decision to include or exclude a route, of which there are exponentially many; CG incrementally grows the subset of columns being used, ultimately converging to an optimal solution. We propose RLCG, the first Reinforcement Learning (RL) approach for CG. Unlike typical column selection rules which myopically select a column based on local information at each iteration, we treat CG as a sequential decision-making problem, as the column selected in an iteration affects subsequent iterations of the algorithm. This perspective lends itself to a Deep Reinforcement Learning approach that uses Graph Neural Networks (GNNs) to represent the variable-constraint structure in the LP of interest. We perform an extensive set of experiments using the publicly available BPPLIB benchmark for CSP and Solomon benchmark for VRPTW. RLCG converges faster and reduces the number of CG iterations by 22.4% for CSP and 40.9% for VRPTW on average compared to a commonly used greedy policy.
Author Information
Cheng Chi (University of Toronto)
Amine Aboussalah (New York University)
Elias Khalil (University of Toronto)
Juyoung Wang
Zoha Sherkat-Masoumi
More from the Same Authors
-
2022 : PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library with Linear Objective Function »
Bo Tang · Elias Khalil -
2022 : Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus »
Yudong Xu · Elias Khalil · Scott Sanner -
2022 Poster: Neur2SP: Neural Two-Stage Stochastic Programming »
Rahul Mihir Patel · Justin Dumouchelle · Elias Khalil · Merve Bodur -
2021 : Machine Learning for Combinatorial Optimization + Q&A »
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon -
2021 Poster: Learning to Schedule Heuristics in Branch and Bound »
Antonia Chmiela · Elias Khalil · Ambros Gleixner · Andrea Lodi · Sebastian Pokutta -
2020 Poster: Hybrid Models for Learning to Branch »
Prateek Gupta · Maxime Gasse · Elias Khalil · Pawan K Mudigonda · Andrea Lodi · Yoshua Bengio