Timezone: »
Poster
Instance-optimal PAC Algorithms for Contextual Bandits
Zhaoqi Li · Lillian Ratliff · houssam nassif · Kevin Jamieson · Lalit Jain
In the stochastic contextual bandit setting, regret-minimizing algorithms have been extensively researched, but their instance-minimizing best-arm identification counterparts remain seldom studied. In this work, we focus on the stochastic bandit problem in the $(\epsilon,\delta)$-PAC setting: given a policy class $\Pi$ the goal of the learner is to return a policy $\pi\in \Pi$ whose expected reward is within $\epsilon$ of the optimal policy with probability greater than $1-\delta$. We characterize the first instance-dependent PAC sample complexity of contextual bandits through a quantity $\rho_{\Pi}$, and provide matching upper and lower bounds in terms of $\rho_{\Pi}$ for the agnostic and linear contextual best-arm identification settings. We show that no algorithm can be simultaneously minimax-optimal for regret minimization and instance-dependent PAC for best-arm identification. Our main result is a new instance-optimal and computationally efficient algorithm that relies on a polynomial number of calls to a cost-sensitive classification oracle.
Author Information
Zhaoqi Li
Lillian Ratliff (University of Washington)
houssam nassif (Amazon)
Kevin Jamieson (U Washington)
Lalit Jain (University of Washington)
More from the Same Authors
-
2022 Poster: Active Learning with Safety Constraints »
Romain Camilleri · Andrew Wagenmaker · Jamie Morgenstern · Lalit Jain · Kevin Jamieson -
2022 Poster: Instance-Dependent Near-Optimal Policy Identification in Linear MDPs via Online Experiment Design »
Andrew Wagenmaker · Kevin Jamieson -
2021 : Beyond No Regret: Instance-Dependent PAC Reinforcement Learning »
Andrew Wagenmaker · Kevin Jamieson -
2021 : Closing the loop in Machine Learning: Learning to optimize with decision dependent data »
Lillian Ratliff -
2021 Poster: Global Convergence to Local Minmax Equilibrium in Classes of Nonconvex Zero-Sum Games »
Tanner Fiez · Lillian Ratliff · Eric Mazumdar · Evan Faulkner · Adhyyan Narang -
2021 Poster: Selective Sampling for Online Best-arm Identification »
Romain Camilleri · Zhihan Xiong · Maryam Fazel · Lalit Jain · Kevin Jamieson -
2021 Poster: Practical, Provably-Correct Interactive Learning in the Realizable Setting: The Power of True Believers »
Julian Katz-Samuels · Blake Mason · Kevin Jamieson · Rob Nowak -
2021 Poster: Online Learning in Periodic Zero-Sum Games »
Tanner Fiez · Ryann Sim · Stratis Skoulakis · Georgios Piliouras · Lillian Ratliff -
2021 Poster: Corruption Robust Active Learning »
Yifang Chen · Simon Du · Kevin Jamieson -
2020 Poster: An Empirical Process Approach to the Union Bound: Practical Algorithms for Combinatorial and Linear Bandits »
Julian Katz-Samuels · Lalit Jain · zohar karnin · Kevin Jamieson -
2020 Poster: Finding All $\epsilon$-Good Arms in Stochastic Bandits »
Blake Mason · Lalit Jain · Ardhendu Tripathy · Robert Nowak -
2019 Poster: A New Perspective on Pool-Based Active Classification and False-Discovery Control »
Lalit Jain · Kevin Jamieson -
2019 Poster: Sequential Experimental Design for Transductive Linear Bandits »
Lalit Jain · Kevin Jamieson · Tanner Fiez · Lillian Ratliff -
2019 Poster: Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs »
Max Simchowitz · Kevin Jamieson -
2018 Poster: A Bandit Approach to Sequential Experimental Design with False Discovery Control »
Kevin Jamieson · Lalit Jain