Timezone: »
Poster
Autoformalization with Large Language Models
Yuhuai Wu · Albert Q. Jiang · Wenda Li · Markus Rabe · Charles Staats · Mateja Jamnik · Christian Szegedy
Autoformalization is the process of automatically translating from natural language mathematics to formal specifications and proofs. A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence.While the long-term goal of autoformalization seemed elusive for a long time, we show large language models provide new prospects towards this goal. We make the surprising observation that LLMs can correctly translate a significant portion ($25.3\%$) of mathematical competition problems perfectly to formal specifications in Isabelle/HOL. We demonstrate the usefulness of this process by improving a previously introduced neural theorem prover via training on these autoformalized theorems. Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from~$29.6\%$ to~$35.2\%$.
Author Information
Yuhuai Wu (Google)
Albert Q. Jiang (University of Cambridge)
Wenda Li (University of Cambridge)
Markus Rabe (Google Research)
Charles Staats (Google)
Mateja Jamnik (University of Cambridge)
Christian Szegedy (Google)
Christian Szegedy is a Machine Learning scientist at Google Research. He has a PhD in Mathematics from the University of Bonn, Germany. His most influential past works include the discovery of adversarial examples and various computer vision architectures for image recognition and object detection. He is the co-inventor of Batch-normalization. He is currently working on automated theorem proving and auto-formalization of mathematics via deep learning.
More from the Same Authors
-
2021 : Efficient Decompositional Rule Extraction for Deep Neural Networks »
Mateo Espinosa Zarlenga · Mateja Jamnik -
2021 : Interpretable Data Analysis for Bench-to-Bedside Research »
Zohreh Shams · Botty Dimanov · Nikola Simidjievski · Helena Andres-Terre · Paul Scherer · Urška Matjašec · Mateja Jamnik · Pietro Lió -
2021 : Can Network Flatness Explain the Training Speed-Generalisation Connection? »
Albert Q. Jiang · Clare Lyle · Lisa Schut · Yarin Gal -
2022 : Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs »
Albert Jiang · Sean Welleck · Jin Peng Zhou · Timothee Lacroix · Jiacheng Liu · Wenda Li · Mateja Jamnik · Guillaume Lample · Yuhuai Wu -
2022 : Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search »
Michał Zawalski · Michał Tyrolski · Konrad Czechowski · Damian Stachura · Piotr Piękos · Tomasz Odrzygóźdź · Yuhuai Wu · Łukasz Kuciński · Piotr Miłoś -
2022 : Human Interventions in Concept Graph Networks »
Lucie Charlotte Magister · Pietro Barbiero · Dmitry Kazhdan · Federico Siciliano · Gabriele Ciravegna · Fabrizio Silvestri · Mateja Jamnik · Pietro Lió -
2022 Workshop: MATH-AI: Toward Human-Level Mathematical Reasoning »
Pan Lu · Swaroop Mishra · Sean Welleck · Yuhuai Wu · Hannaneh Hajishirzi · Percy Liang -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Insights into Pre-training via Simpler Synthetic Tasks »
Yuhuai Wu · Felix Li · Percy Liang -
2022 Poster: Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers »
Albert Q. Jiang · Wenda Li · Szymon Tworkowski · Konrad Czechowski · Tomasz Odrzygóźdź · Piotr Miłoś · Yuhuai Wu · Mateja Jamnik -
2022 Poster: STaR: Bootstrapping Reasoning With Reasoning »
Eric Zelikman · Yuhuai Wu · Jesse Mu · Noah Goodman -
2022 Poster: Exploring Length Generalization in Large Language Models »
Cem Anil · Yuhuai Wu · Anders Andreassen · Aitor Lewkowycz · Vedant Misra · Vinay Ramasesh · Ambrose Slone · Guy Gur-Ari · Ethan Dyer · Behnam Neyshabur -
2022 Poster: Solving Quantitative Reasoning Problems with Language Models »
Aitor Lewkowycz · Anders Andreassen · David Dohan · Ethan Dyer · Henryk Michalewski · Vinay Ramasesh · Ambrose Slone · Cem Anil · Imanol Schlag · Theo Gutman-Solo · Yuhuai Wu · Behnam Neyshabur · Guy Gur-Ari · Vedant Misra -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2022 Poster: Block-Recurrent Transformers »
DeLesley Hutchins · Imanol Schlag · Yuhuai Wu · Ethan Dyer · Behnam Neyshabur -
2021 : [S12] Efficient Decompositional Rule Extraction for Deep Neural Networks »
Mateo Espinosa Zarlenga · Mateja Jamnik -
2021 Poster: Neural Circuit Synthesis from Specification Patterns »
Frederik Schmitt · Christopher Hahn · Markus Rabe · Bernd Finkbeiner -
2020 Tutorial: (Track1) Abstraction & Reasoning in AI systems: Modern Perspectives Q&A »
Francois Chollet · Melanie Mitchell · Christian Szegedy -
2020 Tutorial: (Track1) Abstraction & Reasoning in AI systems: Modern Perspectives »
Francois Chollet · Melanie Mitchell · Christian Szegedy -
2016 Poster: DeepMath - Deep Sequence Models for Premise Selection »
Geoffrey Irving · Christian Szegedy · Alexander Alemi · Niklas Een · Francois Chollet · Josef Urban -
2013 Poster: Deep Neural Networks for Object Detection »
Christian Szegedy · Alexander Toshev · Dumitru Erhan