Timezone: »
Random forests are some of the most widely used machine learning models today, especially in domains that necessitate interpretability. We present an algorithm that accelerates the training of random forests and other popular tree-based learning methods. At the core of our algorithm is a novel node-splitting subroutine, dubbed MABSplit, used to efficiently find split points when constructing decision trees. Our algorithm borrows techniques from the multi-armed bandit literature to judiciously determine how to allocate samples and computational power across candidate split points. We provide theoretical guarantees that MABSplit improves the sample complexity of each node split from linear to logarithmic in the number of data points. In some settings, MABSplit leads to 100x faster training (an 99% reduction in training time) without any decrease in generalization performance. We demonstrate similar speedups when MABSplit is used across a variety of forest-based variants, such as Extremely Random Forests and Random Patches. We also show our algorithm can be used in both classification and regression tasks. Finally, we show that MABSplit outperforms existing methods in generalization performance and feature importance calculations under a fixed computational budget. All of our experimental results are reproducible via a one-line script at https://github.com/ThrunGroup/FastForest.
Author Information
Mo Tiwari (Stanford University)
Ryan Kang (Stanford University)
Jaeyong Lee (University of Oxford)
Chris Piech (Stanford)
Ilan Shomorony (University of Illinois at Urbana Champaign)
Sebastian Thrun (Stanford University)
Martin Zhang (Harvard University)
More from the Same Authors
-
2022 Poster: Giving Feedback on Interactive Student Programs with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2021 : Panel Discussion »
Jo Boaler · Yuri Burda · Chris Piech · Sumeet Singh · Kurt VanLehn -
2020 Poster: Adaptive Learning of Rank-One Models for Efficient Pairwise Sequence Alignment »
Govinda Kamath · Tavor Baharav · Ilan Shomorony -
2020 Poster: BanditPAM: Almost Linear Time k-Medoids Clustering via Multi-Armed Bandits »
Mo Tiwari · Martin Zhang · James J Mayclin · Sebastian Thrun · Chris Piech · Ilan Shomorony -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2013 Demonstration: Codewebs: a Pedagogical Search Engine for Code Submissions to a MOOC »
Jonathan Huang · Chris Piech · Andy Nguyen · Leonidas Guibas -
2007 Workshop: The Urban Challenge – Perspectives of Autonomous Driving »
Sebastian Thrun · Chris Urmson · Raul Rojas · William Uther