Timezone: »
Poster
Linear Label Ranking with Bounded Noise
Dimitris Fotakis · Alkis Kalavasis · Vasilis Kontonis · Christos Tzamos
Label Ranking (LR) is the supervised task of learning a sorting function that maps feature vectors $x \in \mathbb{R}^d$ to rankings $\sigma(x) \in \mathbb S_k$ over a finite set of $k$ labels. We focus on the fundamental case of learning linear sorting functions (LSFs) under Gaussian marginals: $x$ is sampled from the $d$-dimensional standard normal and the ground truth ranking $\sigma^\star(x)$ is the ordering induced by sorting the coordinates of the vector $W^\star x$, where $W^\star \in \mathbb{R}^{k \times d}$ is unknown. We consider learning LSFs in the presence of bounded noise: assuming that a noiseless example is of the form $(x, \sigma^\star(x))$, we observe $(x, \pi)$, where for any pair of elements $i \neq j$, the probability that the order of $i, j$ is different in $\pi$ than in $\sigma^\star(x)$ is at most $\eta < 1/2$. We design efficient non-proper and proper learning algorithms that learn hypotheses within normalized Kendall's Tau distance $\epsilon$ from the ground truth with $N= \widetilde{O}(d\log(k)/\epsilon)$ labeled examples and runtime $\mathrm{poly}(N, k)$. For the more challenging top-$r$ disagreement loss, we give an efficient proper learning algorithm that achieves $\epsilon$ top-$r$ disagreement with the ground truth with $N = \widetilde{O}(d k r /\epsilon)$ samples and $\mathrm{poly}(N)$ runtime.
Author Information
Dimitris Fotakis (National Technical University of Athens)
Alkis Kalavasis (National Technical University of Athens)
Vasilis Kontonis (University of Wisconsin-Madison)
Christos Tzamos (UW-Madison)
More from the Same Authors
-
2021 Spotlight: Forster Decomposition and Learning Halfspaces with Noise »
Ilias Diakonikolas · Daniel Kane · Christos Tzamos -
2022 Poster: Weighted Distillation with Unlabeled Examples »
Fotis Iliopoulos · Vasilis Kontonis · Cenk Baykal · Gaurav Menghani · Khoa Trinh · Erik Vee -
2022 Poster: Learning and Covering Sums of Independent Random Variables with Unbounded Support »
Alkis Kalavasis · Konstantinos Stavropoulos · Emmanouil Zampetakis -
2022 Poster: Perfect Sampling from Pairwise Comparisons »
Dimitris Fotakis · Alkis Kalavasis · Christos Tzamos -
2022 Poster: Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes »
Alkis Kalavasis · Grigoris Velegkas · Amin Karbasi -
2021 Poster: ReLU Regression with Massart Noise »
Ilias Diakonikolas · Jong Ho Park · Christos Tzamos -
2021 Poster: Identity testing for Mallows model »
Róbert Busa-Fekete · Dimitris Fotakis · Balazs Szorenyi · Emmanouil Zampetakis -
2021 Poster: Private and Non-private Uniformity Testing for Ranking Data »
Róbert Busa-Fekete · Dimitris Fotakis · Emmanouil Zampetakis -
2021 Poster: Forster Decomposition and Learning Halfspaces with Noise »
Ilias Diakonikolas · Daniel Kane · Christos Tzamos -
2020 Poster: Efficient Online Learning of Optimal Rankings: Dimensionality Reduction via Gradient Descent »
Dimitris Fotakis · Thanasis Lianeas · Georgios Piliouras · Stratis Skoulakis -
2020 Poster: Non-Convex SGD Learns Halfspaces with Adversarial Label Noise »
Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Nikos Zarifis -
2020 Poster: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2020 Spotlight: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik