Timezone: »
Poster
Distributed Optimization for Overparameterized Problems: Achieving Optimal Dimension Independent Communication Complexity
Bingqing Song · Ioannis Tsaknakis · Chung-Yiu Yau · Hoi-To Wai · Mingyi Hong
Decentralized optimization are playing an important role in applications such as training large machine learning models, among others. Despite its superior practical performance, there has been some lack of fundamental understanding about its theoretical properties. In this work, we address the following open research question: To train an overparameterized model over a set of distributed nodes, what is the {\it minimum} communication overhead (in terms of the bits got exchanged) that the system needs to sustain, while still achieving (near) zero training loss? We show that for a class of overparameterized models where the number of parameters $D$ is much larger than the total data samples $N$, the best possible communication complexity is ${\Omega}(N)$, which is independent of the problem dimension $D$. Further, for a few specific overparameterized models (i.e., the linear regression, and certain multi-layer neural network with one wide layer), we develop a set of algorithms which uses certain linear compression followed by adaptive quantization, and show that they achieve dimension independent, and sometimes near optimal, communication complexity. To our knowledge, this is the first time that dimension independent communication complexity has been shown for distributed optimization.
Author Information
Bingqing Song (University of Minnesota)
Ioannis Tsaknakis (University of Minnesota, Minneapolis)
Chung-Yiu Yau (The Chinese University of Hong Kong)
Hoi-To Wai (The Chinese University of Hong Kong)
Mingyi Hong (University of Minnesota)
More from the Same Authors
-
2021 : A Unified Framework to Understand Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective »
xinwei zhang · Mingyi Hong · Nicola Elia -
2022 : A Unified Framework to Understand Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective »
xinwei zhang · Nicola Elia · Mingyi Hong -
2022 : Building Large Machine Learning Models from Small Distributed Models: A Layer Matching Approach »
xinwei zhang · Bingqing Song · Mehrdad Honarkhah · Jie Ding · Mingyi Hong -
2022 : On the Robustness of deep learning-based MRI Reconstruction to image transformations »
jinghan jia · Mingyi Hong · Yimeng Zhang · Mehmet Akcakaya · Sijia Liu -
2023 Poster: Understanding Expertise through Demonstrations: A Maximum Likelihood Framework for Offline Inverse Reinforcement Learning »
Siliang Zeng · Chenliang Li · Alfredo Garcia · Mingyi Hong -
2023 Poster: VCC: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens »
Zhanpeng Zeng · Cole Hawkins · Mingyi Hong · Aston Zhang · Nikolaos Pappas · Vikas Singh · Shuai Zheng -
2023 Poster: Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning »
Yihua Zhang · Yimeng Zhang · Aochuan Chen · jinghan jia · Jiancheng Liu · Gaowen Liu · Mingyi Hong · Shiyu Chang · Sijia Liu -
2023 Poster: A Unified Framework for Inference-Stage Backdoor Defenses »
Xun Xian · Ganghua Wang · Jayanth Srinivasa · Ashish Kundu · Xuan Bi · Mingyi Hong · Jie Ding -
2023 Oral: Understanding Expertise through Demonstrations: A Maximum Likelihood Framework for Offline Inverse Reinforcement Learning »
Siliang Zeng · Chenliang Li · Alfredo Garcia · Mingyi Hong -
2022 Spotlight: Lightning Talks 5A-2 »
Qiang LI · Zhiwei Xu · Jia-Qi Yang · Thai Hung Le · Haoxuan Qu · Yang Li · Artyom Sorokin · Peirong Zhang · Mira Finkelstein · Nitsan levy · Chung-Yiu Yau · dapeng li · Thommen Karimpanal George · De-Chuan Zhan · Nazar Buzun · Jiajia Jiang · Li Xu · Yichuan Mo · Yujun Cai · Yuliang Liu · Leonid Pugachev · Bin Zhang · Lucy Liu · Hoi-To Wai · Liangliang Shi · Majid Abdolshah · Yoav Kolumbus · Lin Geng Foo · Junchi Yan · Mikhail Burtsev · Lianwen Jin · Yuan Zhan · Dung Nguyen · David Parkes · Yunpeng Baiia · Jun Liu · Kien Do · Guoliang Fan · Jeffrey S Rosenschein · Sunil Gupta · Sarah Keren · Svetha Venkatesh -
2022 Spotlight: Multi-agent Performative Prediction with Greedy Deployment and Consensus Seeking Agents »
Qiang LI · Chung-Yiu Yau · Hoi-To Wai -
2022 Poster: A Stochastic Linearized Augmented Lagrangian Method for Decentralized Bilevel Optimization »
Songtao Lu · Siliang Zeng · Xiaodong Cui · Mark Squillante · Lior Horesh · Brian Kingsbury · Jia Liu · Mingyi Hong -
2022 Poster: Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence »
Boyi Liu · Jiayang Li · Zhuoran Yang · Hoi-To Wai · Mingyi Hong · Yu Nie · Zhaoran Wang -
2022 Poster: Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees »
Siliang Zeng · Chenliang Li · Alfredo Garcia · Mingyi Hong -
2022 Poster: Advancing Model Pruning via Bi-level Optimization »
Yihua Zhang · Yuguang Yao · Parikshit Ram · Pu Zhao · Tianlong Chen · Mingyi Hong · Yanzhi Wang · Sijia Liu -
2022 Poster: Multi-agent Performative Prediction with Greedy Deployment and Consensus Seeking Agents »
Qiang LI · Chung-Yiu Yau · Hoi-To Wai -
2021 : Contributed Talk 2: A Unified Framework to Understand Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective »
xinwei zhang · Mingyi Hong · Nicola Elia -
2021 Poster: STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Communication Complexities for Federated Learning »
Prashant Khanduri · PRANAY SHARMA · Haibo Yang · Mingyi Hong · Jia Liu · Ketan Rajawat · Pramod Varshney -
2021 Poster: A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum »
Prashant Khanduri · Siliang Zeng · Mingyi Hong · Hoi-To Wai · Zhaoran Wang · Zhuoran Yang -
2021 Poster: When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work »
Jiawei Zhang · Yushun Zhang · Mingyi Hong · Ruoyu Sun · Zhi-Quan Luo -
2020 Poster: A Stochastic Path Integral Differential EstimatoR Expectation Maximization Algorithm »
Gersende Fort · Eric Moulines · Hoi-To Wai -
2020 Poster: Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems »
Songtao Lu · Meisam Razaviyayn · Bo Yang · Kejun Huang · Mingyi Hong -
2020 Poster: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Poster: Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms »
Xiangyi Chen · Tiancong Chen · Haoran Sun · Steven Wu · Mingyi Hong -
2020 Spotlight: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Spotlight: Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems »
Songtao Lu · Meisam Razaviyayn · Bo Yang · Kejun Huang · Mingyi Hong -
2020 Poster: Provably Efficient Neural GTD for Off-Policy Learning »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 Poster: Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost »
Zhuoran Yang · Yongxin Chen · Mingyi Hong · Zhaoran Wang -
2019 Poster: Variance Reduced Policy Evaluation with Smooth Function Approximation »
Hoi-To Wai · Mingyi Hong · Zhuoran Yang · Zhaoran Wang · Kexin Tang -
2019 Poster: On the Global Convergence of (Fast) Incremental Expectation Maximization Methods »
Belhal Karimi · Hoi-To Wai · Eric Moulines · Marc Lavielle -
2019 Poster: ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization »
Xiangyi Chen · Sijia Liu · Kaidi Xu · Xingguo Li · Xue Lin · Mingyi Hong · David Cox -
2018 Poster: Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong