Timezone: »
Data augmentation plays a key role in modern machine learning pipelines. While numerous augmentation strategies have been studied in the context of computer vision and natural language processing, less is known for other data modalities. Our work extends the success of data augmentation to compositional data, i.e., simplex-valued data, which is of particular interest in microbiology, geochemistry, and other applications. Drawing on key principles from compositional data analysis, such as the \emph{Aitchison geometry of the simplex} and subcompositions, we define novel augmentation strategies for this data modality. Incorporating our data augmentations into standard supervised learning pipelines results in consistent performance gains across a wide range of standard benchmark datasets. In particular, we set a new state-of-the-art for key disease prediction tasks including colorectal cancer, type 2 diabetes, and Crohn's disease. In addition, our data augmentations enable us to define a novel contrastive learning model, which improves on previous representation learning approaches for microbiome compositional data.
Author Information
Elliott Gordon-Rodriguez (Columbia University)
Thomas Quinn (Deakin University)
John Cunningham (Columbia University)
More from the Same Authors
-
2022 : The Best Deep Ensembles Sacrifice Predictive Diversity »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · John Cunningham -
2022 : Denoising Deep Generative Models »
Gabriel Loaiza-Ganem · Brendan Ross · Luhuan Wu · John Cunningham · Jesse Cresswell · Anthony Caterini -
2023 Poster: Twisting Towards Perfection: Asymptotically Exact Conditional Sampling in Diffusion Models »
Luhuan Wu · Brian Trippe · Christian Naesseth · John Cunningham · David Blei -
2022 Poster: Posterior and Computational Uncertainty in Gaussian Processes »
Jonathan Wenger · Geoff Pleiss · Marvin Pförtner · Philipp Hennig · John Cunningham -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Poster: The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective »
Geoff Pleiss · John Cunningham -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: Rectangular Flows for Manifold Learning »
Anthony Caterini · Gabriel Loaiza-Ganem · Geoff Pleiss · John Cunningham -
2020 : Elliott Gordon-Rodriguez---Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning »
Elliott Gordon-Rodriguez -
2020 Poster: Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking »
Anqi Wu · Estefany Kelly Buchanan · Matthew Whiteway · Michael Schartner · Guido Meijer · Jean-Paul Noel · Erica Rodriguez · Claire Everett · Amy Norovich · Evan Schaffer · Neeli Mishra · C. Daniel Salzman · Dora Angelaki · Andrés Bendesky · The International Brain Laboratory The International Brain Laboratory · John Cunningham · Liam Paninski -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2020 Poster: Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax »
Andres Potapczynski · Gabriel Loaiza-Ganem · John Cunningham -
2019 Poster: Paraphrase Generation with Latent Bag of Words »
Yao Fu · Yansong Feng · John Cunningham -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2019 Poster: Deep Random Splines for Point Process Intensity Estimation of Neural Population Data »
Gabriel Loaiza-Ganem · Sean Perkins · Karen Schroeder · Mark Churchland · John Cunningham -
2019 Poster: The continuous Bernoulli: fixing a pervasive error in variational autoencoders »
Gabriel Loaiza-Ganem · John Cunningham -
2016 Poster: Linear dynamical neural population models through nonlinear embeddings »
Yuanjun Gao · Evan Archer · Liam Paninski · John Cunningham -
2016 Poster: Automated scalable segmentation of neurons from multispectral images »
Uygar Sümbül · Douglas Roossien · Dawen Cai · Fei Chen · Nicholas Barry · John Cunningham · Edward Boyden · Liam Paninski -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2015 Poster: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham -
2015 Spotlight: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham