Timezone: »
The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance.
Author Information
Srishti Gautam (UiT The Arctic University of Norway)
Ahcène Boubekki (UiT The Arctic University of Norway)
Explainable AI, Unsupervised Methods, Clustering, Representation Learning
Stine Hansen (UiT The Arctic University of Norway)
Suaiba Salahuddin (University of Tromsø)
Robert Jenssen (UiT The Arctic University of Norway)
Marina Höhne (TU Berlin)
Michael Kampffmeyer (UiT The Arctic University of Norway)
More from the Same Authors
-
2022 Poster: Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence Learning »
Zaiyu Huang · Hanhui Li · Zhenyu Xie · Michael Kampffmeyer · qingling Cai · Xiaodan Liang -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · Yongwei Chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence Learning »
Zaiyu Huang · Hanhui Li · Zhenyu Xie · Michael Kampffmeyer · qingling Cai · Xiaodan Liang -
2021 Poster: Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN »
Zhenyu Xie · Zaiyu Huang · Fuwei Zhao · Haoye Dong · Michael Kampffmeyer · Xiaodan Liang -
2006 Poster: Kernel Maximum Entropy Data Transformation and an Enhanced Spectral Clustering Algorithm »
Robert Jenssen · Torbjorn Eltoft · Mark A Girolami · Deniz Erdogmus