Timezone: »
A shrinking market is a ubiquitous challenge faced by various industries. In this paper we formulate the first formal model of shrinking markets in multi-item settings, and study how mechanism design and machine learning can help preserve revenue in an uncertain, shrinking market. Via a sample-based learning mechanism, we prove the first guarantees on how much revenue can be preserved by truthful multi-item, multi-bidder auctions (for limited supply) when only a random unknown fraction of the population participates in the market. We first present a general reduction that converts any sufficiently rich auction class into a randomized auction robust to market shrinkage. Our main technique is a novel combinatorial construction called a winner diagram that concisely represents all possible executions of an auction on an uncertain set of bidders. Via a probabilistic analysis of winner diagrams, we derive a general possibility result: a sufficiently rich class of auctions always contains an auction that is robust to market shrinkage and market uncertainty. Our result has applications to important practically-constrained settings such as auctions with a limited number of winners. We then show how to efficiently learn an auction that is robust to market shrinkage by leveraging practically-efficient routines for solving the winner determination problem.
Author Information
Maria-Florina Balcan (Carnegie Mellon University)
Siddharth Prasad (Computer Science Department, Carnegie Mellon University)
Tuomas Sandholm (CMU, Strategic Machine, Strategy Robot, Optimized Markets)
More from the Same Authors
-
2021 Spotlight: Subgame solving without common knowledge »
Brian Zhang · Tuomas Sandholm -
2021 Spotlight: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2023 Poster: Computing Optimal Equilibria and Mechanisms via Learning in Zero-Sum Extensive-Form Games »
Brian Zhang · Gabriele Farina · Ioannis Anagnostides · Federico Cacciamani · Stephen McAleer · Andreas Haupt · Andrea Celli · Nicola Gatti · Vincent Conitzer · Tuomas Sandholm -
2023 Poster: Meta-Learning Adversarial Bandit Algorithms »
Misha Khodak · Ilya Osadchiy · Keegan Harris · Maria-Florina Balcan · Kfir Y. Levy · Ron Meir · Steven Wu -
2023 Poster: Learning with Explanation Constraints »
Rattana Pukdee · Dylan Sam · J. Zico Kolter · Maria-Florina Balcan · Pradeep Ravikumar -
2023 Poster: On the Convergence and Welfare of Learning Algorithms in Smooth Games »
Ioannis Anagnostides · Tuomas Sandholm -
2023 Poster: Team-PSRO for Learning Approximate TMECor in Large Team Games via Cooperative Reinforcement Learning »
Stephen McAleer · Gabriele Farina · Gaoyue Zhou · Mingzhi Wang · Yaodong Yang · Tuomas Sandholm -
2023 Poster: Bicriteria Multidimensional Mechanism Design with Side Information »
Siddharth Prasad · Maria-Florina Balcan · Tuomas Sandholm -
2023 Poster: New Bounds for Hyperparameter Tuning of Regression Problems Across Instances »
Maria-Florina Balcan · Anh Nguyen · Dravyansh Sharma -
2023 Poster: Reliable learning in challenging environments »
Maria-Florina Balcan · Steve Hanneke · Rattana Pukdee · Dravyansh Sharma -
2023 Poster: On the Convergence of No-Regret Learning Dynamics in Time-Varying Games »
Ioannis Anagnostides · Ioannis Panageas · Gabriele Farina · Tuomas Sandholm -
2022 : ESCHER: ESCHEWING IMPORTANCE SAMPLING IN GAMES BY COMPUTING A HISTORY VALUE FUNCTION TO ESTIMATE REGRET »
Stephen McAleer · Gabriele Farina · Marc Lanctot · Tuomas Sandholm -
2022 Panel: Panel 3C-4: Whitening Convergence Rate… & Structural Analysis of… »
Felix Draxler · Siddharth Prasad -
2022 Poster: Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Uncoupled Learning Dynamics with $O(\log T)$ Swap Regret in Multiplayer Games »
Ioannis Anagnostides · Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Tuomas Sandholm -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: Polynomial-Time Optimal Equilibria with a Mediator in Extensive-Form Games »
Brian Zhang · Tuomas Sandholm -
2022 Poster: Optimistic Mirror Descent Either Converges to Nash or to Strong Coarse Correlated Equilibria in Bimatrix Games »
Ioannis Anagnostides · Gabriele Farina · Ioannis Panageas · Tuomas Sandholm -
2022 Poster: Subgame Solving in Adversarial Team Games »
Brian Zhang · Luca Carminati · Federico Cacciamani · Gabriele Farina · Pierriccardo Olivieri · Nicola Gatti · Tuomas Sandholm -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2022 Poster: Near-Optimal No-Regret Learning Dynamics for General Convex Games »
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm -
2021 Poster: Subgame solving without common knowledge »
Brian Zhang · Tuomas Sandholm -
2021 Poster: Equilibrium Refinement for the Age of Machines: The One-Sided Quasi-Perfect Equilibrium »
Gabriele Farina · Tuomas Sandholm -
2021 Poster: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2021 Oral: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2020 Poster: Small Nash Equilibrium Certificates in Very Large Games »
Brian Zhang · Tuomas Sandholm -
2020 Poster: Polynomial-Time Computation of Optimal Correlated Equilibria in Two-Player Extensive-Form Games with Public Chance Moves and Beyond »
Gabriele Farina · Tuomas Sandholm -
2020 Poster: Improving Policy-Constrained Kidney Exchange via Pre-Screening »
Duncan McElfresh · Michael Curry · Tuomas Sandholm · John Dickerson -
2019 Poster: Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Poster: Envy-Free Classification »
Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia -
2019 Poster: Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Spotlight: Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Poster: Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions »
Gabriele Farina · Christian Kroer · Tuomas Sandholm -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2018 Poster: A Unified Framework for Extensive-Form Game Abstraction with Bounds »
Christian Kroer · Tuomas Sandholm -
2018 Poster: Depth-Limited Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm · Brandon Amos -
2018 Poster: Solving Large Sequential Games with the Excessive Gap Technique »
Christian Kroer · Gabriele Farina · Tuomas Sandholm -
2018 Poster: Practical exact algorithm for trembling-hand equilibrium refinements in games »
Gabriele Farina · Nicola Gatti · Tuomas Sandholm -
2018 Spotlight: Solving Large Sequential Games with the Excessive Gap Technique »
Christian Kroer · Gabriele Farina · Tuomas Sandholm -
2018 Poster: Ex ante coordination and collusion in zero-sum multi-player extensive-form games »
Gabriele Farina · Andrea Celli · Nicola Gatti · Tuomas Sandholm -
2018 Poster: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Spotlight: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2017 : Invited Talk: Sample and Computationally Efficient Active Learning Algorithms »
Maria-Florina Balcan -
2017 Demonstration: Libratus: Beating Top Humans in No-Limit Poker »
Noam Brown · Tuomas Sandholm -
2017 Poster: Safe and Nested Subgame Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm -
2017 Oral: Safe and Nested Subgame Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm -
2017 Poster: Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Sample Complexity of Automated Mechanism Design »
Maria-Florina Balcan · Tuomas Sandholm · Ellen Vitercik -
2015 Poster: Regret-Based Pruning in Extensive-Form Games »
Noam Brown · Tuomas Sandholm -
2015 Demonstration: Claudico: The World's Strongest No-Limit Texas Hold'em Poker AI »
Noam Brown · Tuomas Sandholm -
2014 Poster: Diverse Randomized Agents Vote to Win »
Albert Jiang · Leandro Soriano Marcolino · Ariel Procaccia · Tuomas Sandholm · Nisarg Shah · Milind Tambe