Timezone: »
We consider the problem of producing fair probabilistic classifiers for multi-class classification tasks. We formulate this problem in terms of ``projecting'' a pre-trained (and potentially unfair) classifier onto the set of models that satisfy target group-fairness requirements. The new, projected model is given by post-processing the outputs of the pre-trained classifier by a multiplicative factor. We provide a parallelizable, iterative algorithm for computing the projected classifier and derive both sample complexity and convergence guarantees. Comprehensive numerical comparisons with state-of-the-art benchmarks demonstrate that our approach maintains competitive performance in terms of accuracy-fairness trade-off curves, while achieving favorable runtime on large datasets. We also evaluate our method at scale on an open dataset with multiple classes, multiple intersectional groups, and over 1M samples.
Author Information
Wael Alghamdi (Harvard University)
Hsiang Hsu (Harvard University)
I am Hsiang Hsu, a Harvard Ph.D. student working with Flavio Calmon, and also a Meta Fellow. My research interests lie in promoting the interpretability of representations, improving privacy and fairness, and understanding prediction uncertainty in machine learning. I believe these are important issues in modern machine learning when trying to deploy the models in practice.
Haewon Jeong (Harvard University)
Hao Wang (MIT-IBM)
Peter Michalak (Harvard University)
Shahab Asoodeh (McMaster University)
Flavio Calmon (Harvard University)
More from the Same Authors
-
2021 : Who Gets the Benefit of the Doubt? Racial Bias in Machine Learning Algorithms Applied to Secondary School Math Education »
Haewon Jeong · Michael D. Wu · Nilanjana Dasgupta · Muriel Medard · Flavio Calmon -
2022 : Improving Generalization with Physical Equations »
Antoine Wehenkel · Jens Behrmann · Hsiang Hsu · Guillermo Sapiro · Gilles Louppe · Joern-Henrik Jacobsen -
2023 Poster: Adapting Fairness Interventions to Missing Values »
Raymond Feng · Flavio Calmon · Hao Wang -
2023 Poster: Arbitrariness Lies Beyond the Fairness-Accuracy Frontier »
Carol Long · Hsiang Hsu · Wael Alghamdi · Flavio Calmon -
2023 Poster: Post-processing Private Synthetic Data for Improving Utility on Selected Measures »
Hao Wang · Shivchander Sudalairaj · John Henning · Kristjan Greenewald · Akash Srivastava -
2023 Poster: Aleatoric and Epistemic Discrimination: Fundamental Limits of Fairness Interventions »
Hao Wang · Luxi He · Rui Gao · Flavio Calmon -
2023 Poster: Analyzing Generalization of Neural Networks through Loss Path Kernels »
Yilan Chen · Wei Huang · Hao Wang · Charlotte Loh · Akash Srivastava · Lam Nguyen · Lily Weng -
2022 Panel: Panel 1C-7: Beyond Adult and… & Uncalibrated Models Can… »
Kailas Vodrahalli · Flavio Calmon -
2022 Poster: Rashomon Capacity: A Metric for Predictive Multiplicity in Classification »
Hsiang Hsu · Flavio Calmon -
2022 Poster: On the Epistemic Limits of Personalized Prediction »
Lucas Monteiro Paes · Carol Long · Berk Ustun · Flavio Calmon -
2021 Poster: Analyzing the Generalization Capability of SGLD Using Properties of Gaussian Channels »
Hao Wang · Yizhe Huang · Rui Gao · Flavio Calmon -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2018 : Poster session: Contributed papers »
Michael Cvitkovic · Arijit Patra · Yunpeng Li · RAHMAN BANYA SAFF SANYA · Guanghua Chi · Benjamin Huynh · Hamed Alemohammad · Simón Ramírez Amaya · Nazmus Saquib · Jade Abbott · Teo de Campos · Viraj Prabhu · Alvaro Riascos · Hafte Abera · praney dubey · Tanushyam Chattopadhyay · Hsiang Hsu · Mayank Jain · Kartikeya Bhardwaj · Gabriel Cadamuro · Bradley Gram-Hansen · Georg Dorffner -
2018 : Posters 1 »
Wei Wei · Flavio Calmon · Travis Dick · Leilani Gilpin · Maroussia Lévesque · Malek Ben Salem · Michael Wang · Jack Fitzsimons · Dimitri Semenovich · Linda Gu · Nathaniel Fruchter -
2017 Poster: Optimized Pre-Processing for Discrimination Prevention »
Flavio Calmon · Dennis Wei · Bhanukiran Vinzamuri · Karthikeyan Natesan Ramamurthy · Kush Varshney