Timezone: »
Author Information
Thomas Moreau (Inria)
Mathurin Massias (Universita di Genova)
Alexandre Gramfort (Meta)
Pierre Ablin (Apple)
Pierre-Antoine Bannier (INRIA)
Benjamin Charlier (University of Montpellier)
Mathieu Dagréou (Inria Saclay)
Tom Dupre la Tour (UC Berkeley)
Ghislain DURIF (CNRS)
Cassio F. Dantas (INRAE, TETIS, Montpellier)

**Cassio Fraga Dantas** is a research scientist at [INRAE](https://www.inrae.fr/), UMR TETIS, Montpellier, France. Previously, he was a postdoctoral researcher at [IMAG](https://imag.edu.umontpellier.fr/) mathematics laboratory of Montpellier, in the probability and statistics team (EPS) and, prior to that, he was a 2-year postdoctoral researcher at [IRIT](https://www.irit.fr/) computer science laboratory of Toulouse, within the ERC project [FACTORY](http://projectfactory.irit.fr/) in 2020 and 2021. He performed his Ph.D studies at [Inria Rennes](https://www.inria.fr/fr/centre-inria-rennes-bretagne-atlantique), in the PANAMA group, and received his degree on signal, image and vision in 2019 from University of Rennes 1. Before that, in 2014, he obtained an engineering degree from the [Ecole Polytechnique](https://www.polytechnique.edu/) of Paris with a double degree and M.Sc in Electrical Engineering from [University of Campinas](https://www.fee.unicamp.br/?language=en), Brazil. He also has over two years of R\&D experience as an engineer at Idea Electronic Systems, LIP6 laboratory and Schneider Electric prior to his Ph.D studies. His recent research activities lie on the frontier between signal processing, machine learning and convex optimization, including contributions on: sparse inverse problem for image processing; matrix and tensor decomposition; and multi-dimensional data modeling.
Quentin Klopfenstein (University of Luxemburg)
Johan Larsson (Lund University)
En Lai (École Polytechnique)
Tanguy Lefort (University of Montpellier France)
- :seedling: Currently in a PhD thesis in Statistics at the University of Montpellier under the supervision of [Joseph Salmon](http://josephsalmon.eu/), [Benjamin Charlier](https://imag.umontpellier.fr/~charlier/index.php?page=index) and [Alexis Joly](http://www-sop.inria.fr/members/Alexis.Joly/wiki/pmwiki.php) (Inria) - :telescope: I am working on image classification and crowdsourced data, take into account label uncertainty and tasks difficulty (more soon) - :superhero: Also a comic books fan
Benoît Malézieux (INRIA)
Badr MOUFAD (INRIA)
Binh T. Nguyen (Telecom Paris)
Alain Rakotomamonjy (Université de Rouen Normandie Criteo AI Lab)
Zaccharie Ramzi (CNRS - ENS Ulm - Paris)
Zaccharie Ramzi is a PostDoc working on optimization in deep learning with Gabriel Peyre at ENS Ulm - CNRS in Paris. He was a PhD student working on the application of Deep Learning to MRI reconstruction under the supervision of Philippe Ciuciu and Jean-Luc Starck at NeuroSpin (CEA) in the Metric team. He is also a member of the Parietal team from Inria Saclay and the Cosmostat team from the Astrophysics Department of the CEA. Prior to this PhD, he graduated from Telecom ParisTech and ENS Cachan (M.Sc. Mathematics, Vision and Learning), and worked for 1 year as a Data Scientist at xbird, a Berlin-based startup.
Joseph Salmon (Université de Montpellier)
Samuel Vaiter (CNRS)
More from the Same Authors
-
2021 : Electromagnetic neural source imaging under sparsity constraints with SURE-based hyperparameter tuning »
Pierre-Antoine Bannier · Quentin Bertrand · Joseph Salmon · Alexandre Gramfort -
2022 : Validation Diagnostics for SBI algorithms based on Normalizing Flows »
Julia Linhart · Alexandre Gramfort · Pedro Rodrigues -
2022 : Continuous PDE Dynamics Forecasting with Implicit Neural Representations »
Yuan Yin · Matthieu Kirchmeyer · Jean-Yves Franceschi · Alain Rakotomamonjy · Patrick Gallinari -
2022 Panel: Panel 3A-4: Reproducibility in Optimization:… & A framework for… »
Kwangjun Ahn · Mathieu Dagréou -
2022 Poster: Diverse Weight Averaging for Out-of-Distribution Generalization »
Alexandre Rame · Matthieu Kirchmeyer · Thibaud Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord -
2022 Poster: Deep invariant networks with differentiable augmentation layers »
Cédric ROMMEL · Thomas Moreau · Alexandre Gramfort -
2022 Poster: A framework for bilevel optimization that enables stochastic and global variance reduction algorithms »
Mathieu Dagréou · Pierre Ablin · Samuel Vaiter · Thomas Moreau -
2022 Poster: A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension »
Binh T. Nguyen · Bertrand Thirion · Sylvain Arlot -
2022 Poster: Do Residual Neural Networks discretize Neural Ordinary Differential Equations? »
Michael Sander · Pierre Ablin · Gabriel Peyré -
2022 Poster: Beyond L1: Faster and Better Sparse Models with skglm »
Quentin Bertrand · Quentin Klopfenstein · Pierre-Antoine Bannier · Gauthier Gidel · Mathurin Massias -
2022 Poster: Toward a realistic model of speech processing in the brain with self-supervised learning »
Juliette MILLET · Charlotte Caucheteux · pierre orhan · Yves Boubenec · Alexandre Gramfort · Ewan Dunbar · Christophe Pallier · Jean-Remi King -
2022 Poster: Automatic differentiation of nonsmooth iterative algorithms »
Jerome Bolte · Edouard Pauwels · Samuel Vaiter -
2022 Poster: The Hessian Screening Rule »
Johan Larsson · Jonas Wallin -
2021 : A finer mapping of convolutional neural network layers to the visual cortex »
Tom Dupre la Tour · Michael Lu · Michael Eickenberg · Jack Gallant -
2021 Poster: HNPE: Leveraging Global Parameters for Neural Posterior Estimation »
Pedro Rodrigues · Thomas Moreau · Gilles Louppe · Alexandre Gramfort -
2021 : The NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning + Q&A »
Xiaoxi Wei · Vinay Jayaram · Sylvain Chevallier · Giulia Luise · Camille Jeunet · Moritz Grosse-Wentrup · Alexandre Gramfort · Aldo A Faisal -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: Photonic Differential Privacy with Direct Feedback Alignment »
Ruben Ohana · Hamlet Medina · Julien Launay · Alessandro Cappelli · Iacopo Poli · Liva Ralaivola · Alain Rakotomamonjy -
2021 Poster: On the Universality of Graph Neural Networks on Large Random Graphs »
Nicolas Keriven · Alberto Bietti · Samuel Vaiter -
2020 : FastMRI Talk 2 »
Zaccharie Ramzi -
2020 Poster: Learning to solve TV regularised problems with unrolled algorithms »
Hamza Cherkaoui · Jeremias Sulam · Thomas Moreau -
2020 Poster: The Strong Screening Rule for SLOPE »
Johan Larsson · Malgorzata Bogdan · Jonas Wallin -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: Convergence and Stability of Graph Convolutional Networks on Large Random Graphs »
Nicolas Keriven · Alberto Bietti · Samuel Vaiter -
2020 Spotlight: Convergence and Stability of Graph Convolutional Networks on Large Random Graphs »
Nicolas Keriven · Alberto Bietti · Samuel Vaiter -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: Fast geometric learning with symbolic matrices »
Jean Feydy · Alexis Glaunès · Benjamin Charlier · Michael Bronstein -
2020 Poster: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Spotlight: Fast geometric learning with symbolic matrices »
Jean Feydy · Alexis Glaunès · Benjamin Charlier · Michael Bronstein -
2020 Oral: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 Poster: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso »
Quentin Bertrand · Mathurin Massias · Alexandre Gramfort · Joseph Salmon -
2019 Poster: Screening Sinkhorn Algorithm for Regularized Optimal Transport »
Mokhtar Z. Alaya · Maxime Berar · Gilles Gasso · Alain Rakotomamonjy -
2019 Poster: Learning step sizes for unfolded sparse coding »
Pierre Ablin · Thomas Moreau · Mathurin Massias · Alexandre Gramfort -
2019 Poster: Singleshot : a scalable Tucker tensor decomposition »
Abraham Traore · Maxime Berar · Alain Rakotomamonjy -
2019 Poster: Manifold-regression to predict from MEG/EEG brain signals without source modeling »
David Sabbagh · Pierre Ablin · Gael Varoquaux · Alexandre Gramfort · Denis A. Engemann -
2018 Poster: Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals »
Tom Dupré la Tour · Thomas Moreau · Mainak Jas · Alexandre Gramfort -
2017 Poster: Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding »
Mainak Jas · Tom Dupré la Tour · Umut Simsekli · Alexandre Gramfort -
2017 Poster: Joint distribution optimal transportation for domain adaptation »
Nicolas Courty · Rémi Flamary · Amaury Habrard · Alain Rakotomamonjy -
2016 Poster: GAP Safe Screening Rules for Sparse-Group Lasso »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2015 Poster: GAP Safe screening rules for sparse multi-task and multi-class models »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2012 Poster: Multiple Operator-valued Kernel Learning »
Hachem Kadri · Alain Rakotomamonjy · Francis Bach · philippe preux -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2008 Poster: Suppport Vector Machines with a Reject Option »
Yves Grandvalet · Joseph Keshet · Alain Rakotomamonjy · Stephane Canu