Timezone: »
Electroencephalography (EEG) provides access to neuronal dynamics non-invasively with millisecond resolution, rendering it a viable method in neuroscience and healthcare. However, its utility is limited as current EEG technology does not generalize well across domains (i.e., sessions and subjects) without expensive supervised re-calibration. Contemporary methods cast this transfer learning (TL) problem as a multi-source/-target unsupervised domain adaptation (UDA) problem and address it with deep learning or shallow, Riemannian geometry aware alignment methods. Both directions have, so far, failed to consistently close the performance gap to state-of-the-art domain-specific methods based on tangent space mapping (TSM) on the symmetric, positive definite (SPD) manifold.Here, we propose a machine learning framework that enables, for the first time, learning domain-invariant TSM models in an end-to-end fashion. To achieve this, we propose a new building block for geometric deep learning, which we denote SPD domain-specific momentum batch normalization (SPDDSMBN). A SPDDSMBN layer can transform domain-specific SPD inputs into domain-invariant SPD outputs, and can be readily applied to multi-source/-target and online UDA scenarios. In extensive experiments with 6 diverse EEG brain-computer interface (BCI) datasets, we obtain state-of-the-art performance in inter-session and -subject TL with a simple, intrinsically interpretable network architecture, which we denote TSMNet. Code: https://github.com/rkobler/TSMNet
Author Information
Reinmar Kobler (ATR)
Jun-ichiro Hirayama (AIST/RIKEN AIP)
Qibin Zhao (RIKEN AIP)
Motoaki Kawanabe (ATR)
More from the Same Authors
-
2021 : Bayesian Tensor Networks »
Kriton Konstantinidis · Yao Lei Xu · Qibin Zhao · Danilo Mandic -
2021 : Bayesian Latent Factor Model for Higher-order Data: an Extended Abstract »
Zerui Tao · Xuyang ZHAO · Toshihisa Tanaka · Qibin Zhao -
2021 : Is Rank Minimization of the Essence to Learn Tensor Network Structure? »
Chao Li · Qibin Zhao -
2021 : Fully-Connected Tensor Network Decomposition »
Yu-Bang Zheng · Ting-Zhu Huang · Xi-Le Zhao · Qibin Zhao · Tai-Xiang Jiang -
2021 : Discussion Pannel »
Xiao-Yang Liu · Qibin Zhao · Chao Li · Guillaume Rabusseau -
2021 : Bayesian Tensor Networks »
Kriton Konstantinidis · Yao Lei Xu · Qibin Zhao · Danilo Mandic -
2021 Workshop: Second Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Ivan Oseledets · Yufei Ding · Guillaume Rabusseau · Jean Kossaifi · Khadijeh Najafi · Anwar Walid · Andrzej Cichocki · Masashi Sugiyama -
2020 Workshop: First Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Jacob Biamonte · Cesar F Caiafa · Paul Pu Liang · Nadav Cohen · Stefan Leichenauer -
2020 Poster: Demixed shared component analysis of neural population data from multiple brain areas »
Yu Takagi · Steven Kennerley · Jun-ichiro Hirayama · Laurence T Hunt -
2020 Spotlight: Demixed shared component analysis of neural population data from multiple brain areas »
Yu Takagi · Steven Kennerley · Jun-ichiro Hirayama · Laurence T Hunt -
2019 Poster: Deep Multimodal Multilinear Fusion with High-order Polynomial Pooling »
Ming Hou · Jiajia Tang · Jianhai Zhang · Wanzeng Kong · Qibin Zhao -
2013 Poster: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Spotlight: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2011 Poster: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI -
2011 Spotlight: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI