Timezone: »
Single-cell transcriptomics enabled the study of cellular heterogeneity in response to perturbations at the resolution of individual cells. However, scaling high-throughput screens (HTSs) to measure cellular responses for many drugs remains a challenge due to technical limitations and, more importantly, the cost of such multiplexed experiments. Thus, transferring information from routinely performed bulk RNA HTS is required to enrich single-cell data meaningfully.We introduce chemCPA, a new encoder-decoder architecture to study the perturbational effects of unseen drugs. We combine the model with an architecture surgery for transfer learning and demonstrate how training on existing bulk RNA HTS datasets can improve generalisation performance. Better generalisation reduces the need for extensive and costly screens at single-cell resolution. We envision that our proposed method will facilitate more efficient experiment designs through its ability to generate in-silico hypotheses, ultimately accelerating drug discovery.
Author Information
Leon Hetzel (TUM, Helmholtz Munich)
Simon Boehm (Swiss Federal Institute of Technology)

Earlier this year, I finished my Data Science MSc at ETH Zurich. My Master's thesis was supervised by Prof. Theis and Prof. Kilbertus at Helmholtz Munich, in the area of computation biology. Currently, I'm more interested in DL systems research and am working on projects around [reimplementing 3D-parallel distributed deep learning](https://github.com/siboehm/shallowspeed) and [LLVM compilers for tree-based ML models](https://github.com/siboehm/lleaves). Previously I was a compiler engineering intern at AMD, working on the team that builds the MLIR compiler for a dataflow-centric deep learning accelerator (Xilinx AI Engines).
Niki Kilbertus (TUM & Helmholtz AI)
Stephan Günnemann (Technical University of Munich)
mohammad lotfollahi (Helmholtz Zentrum München)
Fabian Theis (Helmholtz Munich)
More from the Same Authors
-
2021 : A sandbox for prediction and integration of DNA, RNA, and proteins in single cells »
Malte Luecken · Daniel Burkhardt · Robrecht Cannoodt · Christopher Lance · Aditi Agrawal · Hananeh Aliee · Ann Chen · Louise Deconinck · Angela Detweiler · Alejandro Granados · Shelly Huynh · Laura Isacco · Yang Kim · Dominik Klein · BONY DE KUMAR · Sunil Kuppasani · Heiko Lickert · Aaron McGeever · Honey Mekonen · Joaquin Melgarejo · Maurizio Morri · Michaela Müller · Norma Neff · Sheryl Paul · Bastian Rieck · Kaylie Schneider · Scott Steelman · Michael Sterr · Daniel Treacy · Alexander Tong · Alexandra-Chloe Villani · Guilin Wang · Jia Yan · Ce Zhang · Angela Pisco · Smita Krishnaswamy · Fabian Theis · Jonathan M Bloom -
2021 : Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience »
Johannes C. Paetzold · Julian McGinnis · Suprosanna Shit · Ivan Ezhov · Paul Büschl · Chinmay Prabhakar · Anjany Sekuboyina · Mihail Todorov · Georgios Kaissis · Ali Ertürk · Stephan Günnemann · Bjoern Menze -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 : Discovering ordinary differential equations that govern time-series »
Sören Becker · Michal Klein · Alexander Neitz · Giambattista Parascandolo · Niki Kilbertus -
2022 : torchode: A Parallel ODE Solver for PyTorch »
Marten Lienen · Stephan Günnemann -
2022 : Modeling Single-Cell Dynamics Using Unbalanced Parameterized Monge Maps »
Luca Eyring · Dominik Klein · Giovanni Palla · Sören Becker · Philipp Weiler · Niki Kilbertus · Fabian Theis -
2022 : Modeling Temporal Data as Continuous Functions with Process Diffusion »
Marin Biloš · Kashif Rasul · Anderson Schneider · Yuriy Nevmyvaka · Stephan Günnemann -
2022 : Training Differentially Private Graph Neural Networks with Random Walk Sampling »
Morgane Ayle · Jan Schuchardt · Lukas Gosch · Daniel Zügner · Stephan Günnemann -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 : Partial identification without distributional assumptions »
Kirtan Padh · Jakob Zeitler · David Watson · Matt Kusner · Ricardo Silva · Niki Kilbertus -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : fcVI: Flow Cytometry Variational Inference »
Kemal Inecik · Adil Meric · Fabian Theis -
2023 : Modelling single-cell RNA-seq trajectories on a flat statistical manifold »
Alessandro Palma · Alessandro Palma · Sergei Rybakov · Leon Hetzel · Fabian Theis · Fabian Theis -
2023 : SpatialSSL: Whole-Brain Spatial Transcriptomics in the Mouse Brain with Self-Supervised Learning »
Till Richter · Anna Schaar · Francesca Drummer · Cheng-Wei Liao · Leopold Endres · Fabian Theis -
2023 : Latent Space Simulator for Unveiling Molecular Free Energy Landscapes and Predicting Transition Dynamics »
Simon Dobers · Simon Dobers · Hannes Stärk · Xiang Fu · Dominique Beaini · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : On the Adversarial Robustness of Graph Contrastive Learning Methods »
Filippo Guerranti · Zinuo Yi · Anna Starovoit · Rafiq Kamel · Simon Geisler · Stephan Günnemann -
2023 : Poisoning $\times$ Evasion: Symbiotic Adversarial Robustness for Graph Neural Networks »
Ege Erdogan · Simon Geisler · Stephan Günnemann -
2023 : Adversarial Attacks and Defenses in Large Language Models: Old and New Threats »
Leo Schwinn · David Dobre · Stephan Günnemann · Gauthier Gidel -
2023 Poster: Training Transitive and Commutative Multimodal Transformers with LoReTTa »
Manuel Tran · Yashin Dicente Cid · Amal Lahiani · Fabian Theis · Tingying Peng · Eldad Klaiman -
2023 Poster: (Provable) Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More »
Jan Schuchardt · Yan Scholten · Stephan Günnemann -
2023 Poster: Hierarchical Randomized Smoothing »
Yan Scholten · Jan Schuchardt · Aleksandar Bojchevski · Stephan Günnemann -
2023 Poster: Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints »
Alistair White · Niki Kilbertus · Maximilian Gelbrecht · Niklas Boers -
2023 Poster: Add and Thin: Diffusion for Temporal Point Processes »
David Lüdke · Marin Biloš · Oleksandr Shchur · Marten Lienen · Stephan Günnemann -
2023 Poster: Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions »
Lukas Gosch · Simon Geisler · Daniel Sturm · Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2022 : Contributed Talk: Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 Competition: Multimodal Single-Cell Integration Across Time, Individuals, and Batches »
Daniel Burkhardt · Jonathan Bloom · Robrecht Cannoodt · Malte Luecken · Smita Krishnaswamy · Christopher Lance · Angela Pisco · Fabian Theis -
2022 : Multimodal Single-Cell Integration Across Time and Individuals »
Daniel Burkhardt · Smita Krishnaswamy · Robrecht Cannoodt · Malte Luecken · Jonathan Bloom · Fabian Theis · Christopher Lance · Angela Pisco -
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2022 Poster: Are Defenses for Graph Neural Networks Robust? »
Felix Mujkanovic · Simon Geisler · Stephan Günnemann · Aleksandar Bojchevski -
2022 Poster: Sparsity in Continuous-Depth Neural Networks »
Hananeh Aliee · Till Richter · Mikhail Solonin · Ignacio Ibarra · Fabian Theis · Niki Kilbertus -
2022 Poster: Invariance-Aware Randomized Smoothing Certificates »
Jan Schuchardt · Stephan Günnemann -
2022 Poster: Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks »
Yan Scholten · Jan Schuchardt · Simon Geisler · Aleksandar Bojchevski · Stephan Günnemann -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2021 Poster: Robustness of Graph Neural Networks at Scale »
Simon Geisler · Tobias Schmidt · Hakan Şirin · Daniel Zügner · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Directional Message Passing on Molecular Graphs via Synthetic Coordinates »
Johannes Gasteiger · Chandan Yeshwanth · Stephan Günnemann -
2021 Poster: Neural Flows: Efficient Alternative to Neural ODEs »
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann -
2021 Poster: Detecting Anomalous Event Sequences with Temporal Point Processes »
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann -
2021 Poster: GemNet: Universal Directional Graph Neural Networks for Molecules »
Johannes Gasteiger · Florian Becker · Stephan Günnemann -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification »
Maximilian Stadler · Bertrand Charpentier · Simon Geisler · Daniel Zügner · Stephan Günnemann -
2021 Poster: On Component Interactions in Two-Stage Recommender Systems »
Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus -
2020 Workshop: Consequential Decisions in Dynamic Environments »
Niki Kilbertus · Angela Zhou · Ashia Wilson · John Miller · Lily Hu · Lydia T. Liu · Nathan Kallus · Shira Mitchell -
2020 Poster: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: Deep Rao-Blackwellised Particle Filters for Time Series Forecasting »
Richard Kurle · Syama Sundar Rangapuram · Emmanuel de Bézenac · Stephan Günnemann · Jan Gasthaus -
2020 Poster: Reliable Graph Neural Networks via Robust Aggregation »
Simon Geisler · Daniel Zügner · Stephan Günnemann -
2020 Oral: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: A Class of Algorithms for General Instrumental Variable Models »
Niki Kilbertus · Matt Kusner · Ricardo Silva -
2020 Poster: Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts »
Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2019 Poster: Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift »
Stephan Rabanser · Stephan Günnemann · Zachary Lipton -
2019 Poster: Diffusion Improves Graph Learning »
Johannes Gasteiger · Stefan Weißenberger · Stephan Günnemann -
2019 Poster: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Spotlight: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Poster: Certifiable Robustness to Graph Perturbations »
Aleksandar Bojchevski · Stephan Günnemann -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2017 Poster: Avoiding Discrimination through Causal Reasoning »
Niki Kilbertus · Mateo Rojas Carulla · Giambattista Parascandolo · Moritz Hardt · Dominik Janzing · Bernhard Schölkopf