Timezone: »
Equilibrium systems are a powerful way to express neural computations. As special cases, they include models of great current interest in both neuroscience and machine learning, such as deep neural networks, equilibrium recurrent neural networks, deep equilibrium models, or meta-learning. Here, we present a new principle for learning such systems with a temporally- and spatially-local rule. Our principle casts learning as a \emph{least-control} problem, where we first introduce an optimal controller to lead the system towards a solution state, and then define learning as reducing the amount of control needed to reach such a state. We show that incorporating learning signals within a dynamics as an optimal control enables transmitting activity-dependent credit assignment information, avoids storing intermediate states in memory, and does not rely on infinitesimal learning signals. In practice, our principle leads to strong performance matching that of leading gradient-based learning methods when applied to an array of problems involving recurrent neural networks and meta-learning. Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
Author Information
Alexander Meulemans (ETH Zürich)
Nicolas Zucchet (ETH Zürich)
Seijin Kobayashi (ETHZ)
Johannes von Oswald (ETH Zurich)
João Sacramento (ETH Zurich)
More from the Same Authors
-
2021 Spotlight: Credit Assignment in Neural Networks through Deep Feedback Control »
Alexander Meulemans · Matilde Tristany Farinha · Javier Garcia Ordonez · Pau Vilimelis Aceituno · João Sacramento · Benjamin F. Grewe -
2022 : Random initialisations performing above chance and how to find them »
Frederik Benzing · Simon Schug · Robert Meier · Johannes von Oswald · Yassir Akram · Nicolas Zucchet · Laurence Aitchison · Angelika Steger -
2022 : Meta-Learning via Classifier(-free) Guidance »
Elvis Nava · Seijin Kobayashi · Yifei Yin · Robert Katzschmann · Benjamin F. Grewe -
2023 Poster: Would I have gotten that reward? Long-term credit assignment by counterfactual contribution analysis »
Alexander Meulemans · Simon Schug · Seijin Kobayashi · nathaniel daw · Gregory Wayne -
2023 Poster: Online learning of long-range dependencies »
Nicolas Zucchet · Robert Meier · Simon Schug · Asier Mujika · Joao Sacramento -
2022 : Panel »
Tyler Hayes · Tinne Tuytelaars · Subutai Ahmad · João Sacramento · Zsolt Kira · Hava Siegelmann · Christopher Summerfield -
2022 Poster: A contrastive rule for meta-learning »
Nicolas Zucchet · Simon Schug · Johannes von Oswald · Dominic Zhao · João Sacramento -
2022 Poster: Disentangling the Predictive Variance of Deep Ensembles through the Neural Tangent Kernel »
Seijin Kobayashi · Pau Vilimelis Aceituno · Johannes von Oswald -
2021 Poster: Credit Assignment in Neural Networks through Deep Feedback Control »
Alexander Meulemans · Matilde Tristany Farinha · Javier Garcia Ordonez · Pau Vilimelis Aceituno · João Sacramento · Benjamin F. Grewe -
2021 Poster: Posterior Meta-Replay for Continual Learning »
Christian Henning · Maria Cervera · Francesco D'Angelo · Johannes von Oswald · Regina Traber · Benjamin Ehret · Seijin Kobayashi · Benjamin F. Grewe · João Sacramento -
2021 Poster: Learning where to learn: Gradient sparsity in meta and continual learning »
Johannes von Oswald · Dominic Zhao · Seijin Kobayashi · Simon Schug · Massimo Caccia · Nicolas Zucchet · João Sacramento -
2020 Poster: A Theoretical Framework for Target Propagation »
Alexander Meulemans · Francesco Carzaniga · Johan Suykens · João Sacramento · Benjamin F. Grewe -
2020 Spotlight: A Theoretical Framework for Target Propagation »
Alexander Meulemans · Francesco Carzaniga · Johan Suykens · João Sacramento · Benjamin F. Grewe