Timezone: »
Meaningful uncertainty quantification in computer vision requires reasoning about semantic information---say, the hair color of the person in a photo or the location of a car on the street. To this end, recent breakthroughs in generative modeling allow us to represent semantic information in disentangled latent spaces, but providing uncertainties on the semantic latent variables has remained challenging. In this work, we provide principled uncertainty intervals that are guaranteed to contain the true semantic factors for any underlying generative model. The method does the following: (1) it uses quantile regression to output a heuristic uncertainty interval for each element in the latent space (2) calibrates these uncertainties such that they contain the true value of the latent for a new, unseen input. The endpoints of these calibrated intervals can then be propagated through the generator to produce interpretable uncertainty visualizations for each semantic factor. This technique reliably communicates semantically meaningful, principled, and instance-adaptive uncertainty in inverse problems like image super-resolution and image completion. Project page: https://swamiviv.github.io/semanticuncertaintyintervals/
Author Information
Swami Sankaranarayanan (Massachusetts Institute of Technology)
Anastasios Angelopoulos (UC Berkeley)
Stephen Bates (UC Berkeley)
Yaniv Romano (Technion---Israel Institute of Technology)
Phillip Isola (Massachusetts Institute of Technology)
More from the Same Authors
-
2021 : The Neural MMO Platform for Massively Multiagent Research »
Joseph Suarez · Yilun Du · Clare Zhu · Igor Mordatch · Phillip Isola -
2021 Spotlight: Learning to See by Looking at Noise »
Manel Baradad Jurjo · Jonas Wulff · Tongzhou Wang · Phillip Isola · Antonio Torralba -
2021 Spotlight: Conformal Prediction using Conditional Histograms »
Matteo Sesia · Yaniv Romano -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Improved Representation of Asymmetrical Distances with Interval Quasimetric Embeddings »
Tongzhou Wang · Phillip Isola -
2022 : Real world relevance of generative counterfactual explanations »
Swami Sankaranarayanan · Thomas Hartvigsen · Lauren Oakden-Rayner · Marzyeh Ghassemi · Phillip Isola -
2022 Competition: The Third Neural MMO Challenge: Learning to Specialize in Massively Multiagent Open Worlds »
Joseph Suarez · Hanmo Chen · Arbin Chen · Bo Wu · Xiaolong Zhu · enhong liu · JUN HU · Chenghui Yu · Phillip Isola -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Line Drawings as Communication »
Phillip Isola -
2022 Poster: Procedural Image Programs for Representation Learning »
Manel Baradad · Richard Chen · Jonas Wulff · Tongzhou Wang · Rogerio Feris · Antonio Torralba · Phillip Isola -
2022 Poster: Robust Calibration with Multi-domain Temperature Scaling »
Yaodong Yu · Stephen Bates · Yi Ma · Michael Jordan -
2022 Poster: Offline Multi-Agent Reinforcement Learning with Knowledge Distillation »
Wei-Cheng Tseng · Tsun-Hsuan Johnson Wang · Yen-Chen Lin · Phillip Isola -
2022 Poster: Training Uncertainty-Aware Classifiers with Conformalized Deep Learning »
Bat-Sheva Einbinder · Yaniv Romano · Matteo Sesia · Yanfei Zhou -
2021 Poster: Learning to Ground Multi-Agent Communication with Autoencoders »
Toru Lin · Jacob Huh · Christopher Stauffer · Ser Nam Lim · Phillip Isola -
2021 Poster: Learning to See by Looking at Noise »
Manel Baradad Jurjo · Jonas Wulff · Tongzhou Wang · Phillip Isola · Antonio Torralba -
2021 Poster: Improving Conditional Coverage via Orthogonal Quantile Regression »
Shai Feldman · Stephen Bates · Yaniv Romano -
2021 Poster: Conformal Prediction using Conditional Histograms »
Matteo Sesia · Yaniv Romano -
2021 Poster: Adaptable Agent Populations via a Generative Model of Policies »
Kenneth Derek · Phillip Isola -
2020 Poster: Supervised Contrastive Learning »
Prannay Khosla · Piotr Teterwak · Chen Wang · Aaron Sarna · Yonglong Tian · Phillip Isola · Aaron Maschinot · Ce Liu · Dilip Krishnan -
2020 Poster: What Makes for Good Views for Contrastive Learning? »
Yonglong Tian · Chen Sun · Ben Poole · Dilip Krishnan · Cordelia Schmid · Phillip Isola -
2020 Poster: Achieving Equalized Odds by Resampling Sensitive Attributes »
Yaniv Romano · Stephen Bates · Emmanuel Candes -
2020 Poster: Classification with Valid and Adaptive Coverage »
Yaniv Romano · Matteo Sesia · Emmanuel Candes -
2020 Spotlight: Classification with Valid and Adaptive Coverage »
Yaniv Romano · Matteo Sesia · Emmanuel Candes -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Oral Presentations »
Janith Petangoda · Sergio Pascual-Diaz · Jordi Grau-Moya · Raphaël Marinier · Olivier Pietquin · Alexei Efros · Phillip Isola · Trevor Darrell · Christopher Lu · Deepak Pathak · Johan Ferret -
2019 Poster: Conformalized Quantile Regression »
Yaniv Romano · Evan Patterson · Emmanuel Candes -
2019 Poster: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2019 Spotlight: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2011 Poster: Understanding the Intrinsic Memorability of Images »
Phillip Isola · Devi Parikh · Antonio Torralba · Aude Oliva