Timezone: »

Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design
Jörg Franke · Frederic Runge · Frank Hutter

Wed Nov 30 02:00 PM -- 04:00 PM (PST) @ Hall J #229

Our world is ambiguous and this is reflected in the data we use to train our algorithms. This is particularly true when we try to model natural processes where collected data is affected by noisy measurements and differences in measurement techniques. Sometimes, the process itself is ambiguous, such as in the case of RNA folding, where the same nucleotide sequence can fold into different structures. This suggests that a predictive model should have similar probabilistic characteristics to match the data it models. Therefore, we propose a hierarchical latent distribution to enhance one of the most successful deep learning models, the Transformer, to accommodate ambiguities and data distributions. We show the benefits of our approach (1) on a synthetic task that captures the ability to learn a hidden data distribution, (2) with state-of-the-art results in RNA folding that reveal advantages on highly ambiguous data, and (3) demonstrating its generative capabilities on property-based molecule design by implicitly learning the underlying distributions and outperforming existing work.

Author Information

Jörg Franke (University of Freiburg)
Frederic Runge (University of Freiburg)
Frank Hutter (University of Freiburg & Bosch)

Frank Hutter is a Full Professor for Machine Learning at the Computer Science Department of the University of Freiburg (Germany), where he previously was an assistant professor 2013-2017. Before that, he was at the University of British Columbia (UBC) for eight years, for his PhD and postdoc. Frank's main research interests lie in machine learning, artificial intelligence and automated algorithm design. For his 2009 PhD thesis on algorithm configuration, he received the CAIAC doctoral dissertation award for the best thesis in AI in Canada that year, and with his coauthors, he received several best paper awards and prizes in international competitions on machine learning, SAT solving, and AI planning. Since 2016 he holds an ERC Starting Grant for a project on automating deep learning based on Bayesian optimization, Bayesian neural networks, and deep reinforcement learning.

More from the Same Authors