Timezone: »

Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand · Justin Chen · Piotr Indyk · Shyam Narayanan · Ronitt Rubinfeld · Nicholas Schiefer · Sandeep Silwal · Tal Wagner

Tue Nov 29 09:00 AM -- 11:00 AM (PST) @ Hall J #941
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the “combine” function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with {\em exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only $\mathrm{polylog}(n)$ parameters, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.

Author Information

Anders Aamand (Massachusetts Institute of Technology)
Justin Chen (MIT)
Piotr Indyk (MIT)
Shyam Narayanan (Massachusetts Institute of Technology)
Ronitt Rubinfeld (MIT)
Nicholas Schiefer (Massachusetts Institute of Technology)
Sandeep Silwal (Massachusetts Institute of Technology)
Tal Wagner (Microsoft Research Redmond)

More from the Same Authors