Timezone: »
Poster
ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective
Yihong Chen · Pushkar Mishra · Luca Franceschi · Pasquale Minervini · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel
Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon $\textit{both}$ modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.
Author Information
Yihong Chen (University College London, Meta AI)
I connect things using relational learning, language models and imagination.
Pushkar Mishra (Facebook AI)
Luca Franceschi (Amazon Development Center Germany)
Pasquale Minervini (University College London)
Pontus Lars Erik Saito Stenetorp (University of Tokyo)
Sebastian Riedel (DeepMind / UCL)
More from the Same Authors
-
2021 : Towards a robust experimental framework and benchmark for lifelong language learning »
Aman Hussain · Nithin Holla · Pushkar Mishra · Helen Yannakoudakis · Ekaterina Shutova -
2022 : Discrete Learning Of DAGs Via Backpropagation »
Andrew Wren · Pasquale Minervini · Luca Franceschi · Valentina Zantedeschi -
2022 : An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks »
Yuxiang Wu · Yu Zhao · Baotian Hu · Pasquale Minervini · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2022 : Discrete Learning Of DAGs Via Backpropagation »
Andrew Wren · Pasquale Minervini · Luca Franceschi · Valentina Zantedeschi -
2022 Poster: Autoregressive Search Engines: Generating Substrings as Document Identifiers »
Michele Bevilacqua · Giuseppe Ottaviano · Patrick Lewis · Scott Yih · Sebastian Riedel · Fabio Petroni -
2021 Poster: Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions »
Mathias Niepert · Pasquale Minervini · Luca Franceschi -
2020 Workshop: HAMLETS: Human And Model in the Loop Evaluation and Training Strategies »
Divyansh Kaushik · Bhargavi Paranjape · Forough Arabshahi · Yanai Elazar · Yixin Nie · Max Bartolo · Polina Kirichenko · Pontus Lars Erik Saito Stenetorp · Mohit Bansal · Zachary Lipton · Douwe Kiela -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 : Reading and Reasoning with Neural Program Interpreters »
Sebastian Riedel -
2017 Poster: End-to-End Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Oral: End-to-end Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Demonstration: A Visual and Interactive IDE for Probabilistic Programming »
Sameer Singh · Luke Hewitt · Tim Rocktäschel · Sebastian Riedel