Timezone: »
Poster
Log-Concave and Multivariate Canonical Noise Distributions for Differential Privacy
Jordan Awan · Jinshuo Dong
A canonical noise distribution (CND) is an additive mechanism designed to satisfy $f$-differential privacy ($f$-DP), without any wasted privacy budget. $f$-DP is a hypothesis testing-based formulation of privacy phrased in terms of tradeoff functions, which captures the difficulty of a hypothesis test. In this paper, we consider the existence and construction of both log-concave CNDs and multivariate CNDs. Log-concave distributions are important to ensure that higher outputs of the mechanism correspond to higher input values, whereas multivariate noise distributions are important to ensure that a joint release of multiple outputs has a tight privacy characterization. We show that the existence and construction of CNDs for both types of problems is related to whether the tradeoff function can be decomposed by functional composition (related to group privacy) or mechanism composition. In particular, we show that pure $\epsilon$-DP cannot be decomposed in either way and that there is neither a log-concave CND nor any multivariate CND for $\epsilon$-DP. On the other hand, we show that Gaussian-DP, $(0,\delta)$-DP, and Laplace-DP each have both log-concave and multivariate CNDs.
Author Information
Jordan Awan (Purdue University)
Jinshuo Dong (Northwestern University)
More from the Same Authors
-
2021 : Canonical Noise Distributions and Private Hypothesis Tests »
Jordan Awan · Salil Vadhan -
2021 : Privacy-Aware Rejection Sampling »
Jordan Awan · Vinayak Rao -
2022 Poster: Data Augmentation MCMC for Bayesian Inference from Privatized Data »
Nianqiao Ju · Jordan Awan · Ruobin Gong · Vinayak Rao -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Data Augmentation MCMC for Bayesian Inference from Privatized Data »
Nianqiao Ju · Jordan Awan · Ruobin Gong · Vinayak Rao -
2021 : Canonical Noise Distributions and Private Hypothesis Tests »
Jordan Awan · Salil Vadhan -
2021 : Privacy-Aware Rejection Sampling »
Jordan Awan · Vinayak Rao -
2019 Poster: Elliptical Perturbations for Differential Privacy »
Matthew Reimherr · Jordan Awan -
2019 Poster: KNG: The K-Norm Gradient Mechanism »
Matthew Reimherr · Jordan Awan -
2018 Poster: Differentially Private Uniformly Most Powerful Tests for Binomial Data »
Jordan Awan · Aleksandra Slavković