Timezone: »
We study the problem of learning an adversarially robust predictor to test time attacks in the semi-supervised PAC model.We address the question of how many labeled and unlabeled examples are required to ensure learning.We show that having enough unlabeled data (the size of a labeled sample that a fully-supervised method would require),the labeled sample complexity can be arbitrarily smaller compared to previous works, and is sharply characterized by a different complexity measure. We prove nearly matching upper and lower bounds on this sample complexity.This shows that there is a significant benefit in semi-supervised robust learning even in the worst-case distribution-free model, and establishes a gap between supervised and semi-supervised label complexities which is known not to hold in standard non-robust PAC learning.
Author Information
Idan Attias (Ben Gurion University)
Steve Hanneke (Toyota Technological Institute at Chicago)
Yishay Mansour (Tel Aviv University & Google)
More from the Same Authors
-
2021 Spotlight: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : Finding Safe Zones of Markov Decision Processes Policies »
Michal Moshkovitz · Lee Cohen · Yishay Mansour -
2023 Poster: Adversarial Resilience in Sequential Prediction via Abstention »
Surbhi Goel · Steve Hanneke · Shay Moran · Abhishek Shetty -
2023 Poster: Optimal Learners for Realizable Regression: PAC Learning and Online Learning »
Idan Attias · Steve Hanneke · Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas -
2023 Poster: A Trichotomy for Transductive Online Learning »
Steve Hanneke · Shay Moran · Jonathan Shafer -
2023 Poster: Near-optimal learning with average Hölder smoothness »
Guy Kornowski · Aryeh Kontorovich · Steve Hanneke -
2023 Poster: Reliable learning in challenging environments »
Maria-Florina Balcan · Steve Hanneke · Rattana Pukdee · Dravyansh Sharma -
2023 Oral: Optimal Learners for Realizable Regression: PAC Learning and Online Learning »
Idan Attias · Steve Hanneke · Alkis Kalavasis · Amin Karbasi · Grigoris Velegkas -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Poster: Benign Underfitting of Stochastic Gradient Descent »
Tomer Koren · Roi Livni · Yishay Mansour · Uri Sherman -
2022 Poster: Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: Fair Wrapping for Black-box Predictions »
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie -
2022 Poster: Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization »
Omar Montasser · Steve Hanneke · Nati Srebro -
2022 Poster: Universal Rates for Interactive Learning »
Steve Hanneke · Amin Karbasi · Shay Moran · Grigoris Velegkas -
2022 Poster: On Optimal Learning Under Targeted Data Poisoning »
Steve Hanneke · Amin Karbasi · Mohammad Mahmoody · Idan Mehalel · Shay Moran -
2021 Poster: Minimax Regret for Stochastic Shortest Path »
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg -
2021 Oral: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure »
Aviv Rosenberg · Yishay Mansour -
2021 Poster: Differentially Private Multi-Armed Bandits in the Shuffle Model »
Jay Tenenbaum · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2021 Poster: ROI Maximization in Stochastic Online Decision-Making »
Nicolò Cesa-Bianchi · Tom Cesari · Yishay Mansour · Vianney Perchet -
2021 Poster: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 Poster: Dueling Bandits with Team Comparisons »
Lee Cohen · Ulrike Schmidt-Kraepelin · Yishay Mansour -
2020 Poster: Reducing Adversarially Robust Learning to Non-Robust PAC Learning »
Omar Montasser · Steve Hanneke · Nati Srebro -
2020 Session: Orals & Spotlights Track 24: Learning Theory »
Avrim Blum · Steve Hanneke -
2020 Poster: Prediction with Corrupted Expert Advice »
Idan Amir · Idan Attias · Tomer Koren · Yishay Mansour · Roi Livni -
2020 Spotlight: Prediction with Corrupted Expert Advice »
Idan Amir · Idan Attias · Tomer Koren · Yishay Mansour · Roi Livni -
2019 Poster: On the Value of Target Data in Transfer Learning »
Steve Hanneke · Samory Kpotufe -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Spotlight: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Poster: Multi-Armed Bandits with Metric Movement Costs »
Tomer Koren · Roi Livni · Yishay Mansour