Timezone: »

 
Poster
Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Variants and Convergence to Exact Solution
Antonio Orvieto · Simon Lacoste-Julien · Nicolas Loizou

Tue Nov 29 09:00 AM -- 11:00 AM (PST) @ Hall J #922

Recently Loizou et al. (2021), proposed and analyzed stochastic gradient descent (SGD) with stochastic Polyak stepsize (SPS). The proposed SPS comes with strong convergence guarantees and competitive performance; however, it has two main drawbacks when it is used in non-over-parameterized regimes: (i) It requires a priori knowledge of the optimal mini-batch losses, which are not available when the interpolation condition is not satisfied (e.g., regularized objectives), and (ii) it guarantees convergence only to a neighborhood of the solution. In this work, we study the dynamics and the convergence properties of SGD equipped with new variants of the stochastic Polyak stepsize and provide solutions to both drawbacks of the original SPS. We first show that a simple modification of the original SPS that uses lower bounds instead of the optimal function values can directly solve issue (i). On the other hand, solving issue (ii) turns out to be more challenging and leads us to valuable insights into the method's behavior. We show that if interpolation is not satisfied, the correlation between SPS and stochastic gradients introduces a bias, which effectively distorts the expectation of the gradient signal near minimizers, leading to non-convergence - even if the stepsize is scaled down during training. To fix this issue, we propose DecSPS, a novel modification of SPS, which guarantees convergence to the exact minimizer - without a priori knowledge of the problem parameters. For strongly-convex optimization problems, DecSPS is the first stochastic adaptive optimization method that converges to the exact solution without restrictive assumptions like bounded iterates/gradients.

Author Information

Antonio Orvieto (ETH Zurich)

PhD Student at ETH Zurich. I’m interested in the design and analysis of optimization algorithms for deep learning. Interned at DeepMind, MILA, and Meta. All publications at http://orvi.altervista.org/ Looking for postdoc positions! :) antonio.orvieto@inf.ethz.ch

Simon Lacoste-Julien (Mila, Université de Montréal & SAIL Montreal)

Simon Lacoste-Julien is an associate professor at Mila and DIRO from Université de Montréal, and Canada CIFAR AI Chair holder. He also heads part time the SAIT AI Lab Montreal from Samsung. His research interests are machine learning and applied math, with applications in related fields like computer vision and natural language processing. He obtained a B.Sc. in math., physics and computer science from McGill, a PhD in computer science from UC Berkeley and a post-doc from the University of Cambridge. He spent a few years as a research faculty at INRIA and École normale supérieure in Paris before coming back to his roots in Montreal in 2016 to answer the call from Yoshua Bengio in growing the Montreal AI ecosystem.

Nicolas Loizou (Johns Hopkins University)

More from the Same Authors