Timezone: »

 
Poster
Concrete Score Matching: Generalized Score Matching for Discrete Data
Chenlin Meng · Kristy Choi · Jiaming Song · Stefano Ermon

Thu Dec 01 09:00 AM -- 11:00 AM (PST) @ Hall J #115

Representing probability distributions by the gradient of their density functions has proven effective in modeling a wide range of continuous data modalities. However, this representation is not applicable in discrete domains where the gradient is undefined. To this end, we propose an analogous score function called the “Concrete score”, a generalization of the (Stein) score for discrete settings. Given a predefined neighborhood structure, the Concrete score of any input is defined by the rate of change of the probabilities with respect to local directional changes of the input. This formulation allows us to recover the (Stein) score in continuous domains when measuring such changes by the Euclidean distance, while using the Manhattan distance leads to our novel score function in discrete domains. Finally, we introduce a new framework to learn such scores from samples called Concrete Score Matching (CSM), and propose an efficient training objective to scale our approach to high dimensions. Empirically, we demonstrate the efficacy of CSM on density estimation tasks on a mixture of synthetic, tabular, and high-dimensional image datasets, and demonstrate that it performs favorably relative to existing baselines for modeling discrete data.

Author Information

Chenlin Meng (Stanford University)
Kristy Choi (Stanford University)
Jiaming Song (Stanford University)

I am a first year Ph.D. student in Stanford University. I think about problems in machine learning and deep learning under the supervision of Stefano Ermon. I did my undergrad at Tsinghua University, where I was lucky enough to collaborate with Jun Zhu and Lawrence Carin on scalable Bayesian machine learning.

Stefano Ermon (Stanford)

More from the Same Authors