Timezone: »
Numerical Partial Differential Equation (PDE) solvers often require discretizing the physical domain by using a mesh. Mesh movement methods provide the capability to improve the accuracy of the numerical solution without introducing extra computational burden to the PDE solver, by increasing mesh resolution where the solution is not well-resolved, whilst reducing unnecessary resolution elsewhere. However, sophisticated mesh movement methods, such as the Monge-Ampère method, generally require the solution of auxiliary equations. These solutions can be extremely expensive to compute when the mesh needs to be adapted frequently. In this paper, we propose to the best of our knowledge the first learning-based end-to-end mesh movement framework for PDE solvers. Key requirements of learning-based mesh movement methods are: alleviating mesh tangling, boundary consistency, and generalization to mesh with different resolutions. To achieve these goals, we introduce the neural spline model and the graph attention network (GAT) into our models respectively. While the Neural-Spline based model provides more flexibility for large mesh deformation, the GAT based model can handle domains with more complicated shapes and is better at performing delicate local deformation. We validate our methods on stationary and time-dependent, linear and non-linear equations, as well as regularly and irregularly shaped domains. Compared to the traditional Monge-Ampère method, our approach can greatly accelerate the mesh adaptation process by three to four orders of magnitude, whilst achieving comparable numerical error reduction.
Author Information
Wenbin Song (Shanghaitech University)
Mingrui Zhang (Imperial College London)
Joseph G Wallwork (Imperial College London)
Junpeng Gao (ETHZ - ETH Zurich)
Zheng Tian (UCL)
Fanglei Sun (ShanghaiTech)
Matthew Piggott (Imperial College London)
Junqing Chen (Tsinghua University, Tsinghua University)
Zuoqiang Shi (zqshi@mail.tsinghua.edu.cn)
Xiang Chen (Huawei Technologies Ltd.)
Jun Wang (UCL)
More from the Same Authors
-
2022 Poster: Multiagent Q-learning with Sub-Team Coordination »
Wenhan Huang · Kai Li · Kun Shao · Tianze Zhou · Matthew Taylor · Jun Luo · Dongge Wang · Hangyu Mao · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 : Contextual Transformer for Offline Meta Reinforcement Learning »
Runji Lin · Ye Li · Xidong Feng · Zhaowei Zhang · XIAN HONG WU FUNG · Haifeng Zhang · Jun Wang · Yali Du · Yaodong Yang -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Multiagent Q-learning with Sub-Team Coordination »
Wenhan Huang · Kai Li · Kun Shao · Tianze Zhou · Matthew Taylor · Jun Luo · Dongge Wang · Hangyu Mao · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Optimistic Tree Searches for Combinatorial Black-Box Optimization »
Cedric Malherbe · Antoine Grosnit · Rasul Tutunov · Haitham Bou Ammar · Jun Wang -
2022 Poster: Optimistic Tree Searches for Combinatorial Black-Box Optimization »
Cedric Malherbe · Antoine Grosnit · Rasul Tutunov · Haitham Bou Ammar · Jun Wang -
2022 Poster: Enhancing Safe Exploration Using Safety State Augmentation »
Aivar Sootla · Alexander Cowen-Rivers · Jun Wang · Haitham Bou Ammar -
2022 Poster: Multi-Agent Reinforcement Learning is a Sequence Modeling Problem »
Muning Wen · Jakub Kuba · Runji Lin · Weinan Zhang · Ying Wen · Jun Wang · Yaodong Yang -
2022 Poster: A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning »
Bo Liu · Xidong Feng · Jie Ren · Luo Mai · Rui Zhu · Haifeng Zhang · Jun Wang · Yaodong Yang -
2021 : Performance-Guaranteed ODE Solvers with Complexity-Informed Neural Networks »
Feng Zhao · Xiang Chen · Jun Wang · Zuoqiang Shi · Shao-Lun Huang -
2021 Poster: Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks »
Jianhong Wang · Wangkun Xu · Yunjie Gu · Wenbin Song · Tim C Green -
2019 Poster: ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies »
Bao Wang · Zuoqiang Shi · Stanley Osher -
2018 Poster: Deep Neural Nets with Interpolating Function as Output Activation »
Bao Wang · Xiyang Luo · Zhen Li · Wei Zhu · Zuoqiang Shi · Stanley Osher -
2017 Poster: Thinking Fast and Slow with Deep Learning and Tree Search »
Thomas Anthony · Zheng Tian · David Barber