Timezone: »
Neural Ordinary Differential Equations (NODEs) have proven successful in learning dynamical systems in terms of accurately recovering the observed trajectories. While different types of sparsity have been proposed to improve robustness, the generalization properties of NODEs for dynamical systems beyond the observed data are underexplored. We systematically study the influence of weight and feature sparsity on forecasting as well as on identifying the underlying dynamical laws. Besides assessing existing methods, we propose a regularization technique to sparsify ``input-output connections'' and extract relevant features during training. Moreover, we curate real-world datasets including human motion capture and human hematopoiesis single-cell RNA-seq data to realistically analyze different levels of out-of-distribution (OOD) generalization in forecasting and dynamics identification respectively. Our extensive empirical evaluation on these challenging benchmarks suggests that weight sparsity improves generalization in the presence of noise or irregular sampling. However, it does not prevent learning spurious feature dependencies in the inferred dynamics, rendering them impractical for predictions under interventions, or for inferring the true underlying dynamics. Instead, feature sparsity can indeed help with recovering sparse ground-truth dynamics compared to unregularized NODEs.
Author Information
Hananeh Aliee (Helmholtz AI)
I am a postdoctoral researcher in computational biology working in the ngroup of Prof. Fabian Theis. I did my phd in Computer Science.
Till Richter (Helmholtz Munich)
I'm a doctoral candidate in the Helmholtz International Lab, consisting of the Machine Learning group of Prof. Dr. Dr. Fabian Theis at ICB, the Reliable Machine Learning group of Prof. Dr. Niki Kilbertus at Helmholtz AI, and Prof. Dr. Yoshua Bengio at MILA. I'm a member of the graduate school Munich School for Data Science (MUDS) and HELENA. Fields: Causal Machine Learning, Reliable Machine Learning
Mikhail Solonin (Technische Universität München)
Ignacio Ibarra
Fabian Theis (Helmholtz Munich)
Niki Kilbertus (TUM & Helmholtz AI)
More from the Same Authors
-
2021 : A sandbox for prediction and integration of DNA, RNA, and proteins in single cells »
Malte Luecken · Daniel Burkhardt · Robrecht Cannoodt · Christopher Lance · Aditi Agrawal · Hananeh Aliee · Ann Chen · Louise Deconinck · Angela Detweiler · Alejandro Granados · Shelly Huynh · Laura Isacco · Yang Kim · Dominik Klein · BONY DE KUMAR · Sunil Kuppasani · Heiko Lickert · Aaron McGeever · Honey Mekonen · Joaquin Melgarejo · Maurizio Morri · Michaela Müller · Norma Neff · Sheryl Paul · Bastian Rieck · Kaylie Schneider · Scott Steelman · Michael Sterr · Daniel Treacy · Alexander Tong · Alexandra-Chloe Villani · Guilin Wang · Jia Yan · Ce Zhang · Angela Pisco · Smita Krishnaswamy · Fabian Theis · Jonathan M Bloom -
2022 : Discovering ordinary differential equations that govern time-series »
Sören Becker · Michal Klein · Alexander Neitz · Giambattista Parascandolo · Niki Kilbertus -
2022 : Modeling Single-Cell Dynamics Using Unbalanced Parameterized Monge Maps »
Luca Eyring · Dominik Klein · Giovanni Palla · Sören Becker · Philipp Weiler · Niki Kilbertus · Fabian Theis -
2022 : Partial identification without distributional assumptions »
Kirtan Padh · Jakob Zeitler · David Watson · Matt Kusner · Ricardo Silva · Niki Kilbertus -
2022 Competition: Multimodal Single-Cell Integration Across Time, Individuals, and Batches »
Daniel Burkhardt · Jonathan Bloom · Robrecht Cannoodt · Malte Luecken · Smita Krishnaswamy · Christopher Lance · Angela Pisco · Fabian Theis -
2022 : Multimodal Single-Cell Integration Across Time and Individuals »
Daniel Burkhardt · Smita Krishnaswamy · Robrecht Cannoodt · Malte Luecken · Jonathan Bloom · Fabian Theis · Christopher Lance · Angela Pisco -
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2022 Poster: Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution »
Leon Hetzel · Simon Boehm · Niki Kilbertus · Stephan Günnemann · mohammad lotfollahi · Fabian Theis -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: On Component Interactions in Two-Stage Recommender Systems »
Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus -
2020 Workshop: Consequential Decisions in Dynamic Environments »
Niki Kilbertus · Angela Zhou · Ashia Wilson · John Miller · Lily Hu · Lydia T. Liu · Nathan Kallus · Shira Mitchell -
2020 Poster: A Class of Algorithms for General Instrumental Variable Models »
Niki Kilbertus · Matt Kusner · Ricardo Silva -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2017 Poster: Avoiding Discrimination through Causal Reasoning »
Niki Kilbertus · Mateo Rojas Carulla · Giambattista Parascandolo · Moritz Hardt · Dominik Janzing · Bernhard Schölkopf