Timezone: »
Visual information arriving at the retina is transmitted to the brain by signals in the optic nerve, and the brain must rely solely on these signals to make inferences about the visual world. Previous work has probed the content of these signals by directly reconstructing images from retinal activity using linear regression or nonlinear regression with neural networks. Maximum a posteriori (MAP) reconstruction using retinal encoding models and separately-trained natural image priors offers a more general and principled approach. We develop a novel method for approximate MAP reconstruction that combines a generalized linear model for retinal responses to light, including their dependence on spike history and spikes of neighboring cells, with the image prior implicitly embedded in a deep convolutional neural network trained for image denoising. We use this method to reconstruct natural images from ex vivo simultaneously-recorded spikes of hundreds of retinal ganglion cells uniformly sampling a region of the retina. The method produces reconstructions that match or exceed the state-of-the-art in perceptual similarity and exhibit additional fine detail, while using substantially fewer model parameters than previous approaches. The use of more rudimentary encoding models (a linear-nonlinear-Poisson cascade) or image priors (a 1/f spectral model) significantly reduces reconstruction performance, indicating the essential role of both components in achieving high-quality reconstructed images from the retinal signal.
Author Information
Eric Wu (Stanford University)
Nora Brackbill (Stanford University)
Alexander Sher (Santa Cruz Institute for Particle Physics, University of California, Santa Cruz)
Alan Litke (Santa Cruz Institute for Particle Physics, University of California, Santa Cruz)
Eero Simoncelli (FlatIron Institute / New York University)
Eero P. Simoncelli received the B.S. degree in Physics in 1984 from Harvard University, studied applied mathematics at Cambridge University for a year and a half, and then received the M.S. degree in 1988 and the Ph.D. degree in 1993, both in Electrical Engineering from the Massachusetts Institute of Technology. He was an Assistant Professor in the Computer and Information Science department at the University of Pennsylvania from 1993 until 1996. He moved to New York University in September of 1996, where he is currently a Professor in Neural Science, Mathematics, and Psychology. In August 2000, he became an Associate Investigator of the Howard Hughes Medical Institute, under their new program in Computational Biology. In Fall 2020, he resigned his HHMI appointment to become the scientific director of the Center for Computational Neuroscience at the Flatiron Institute, of the Simons Foundation. His research interests span a wide range of topics in the representation and analysis of visual images, in both machine and biological systems.
E.J. Chichilnisky (Stanford University)
More from the Same Authors
-
2022 : Fine-tuning hierarchical circuits through learned stochastic co-modulation »
Caroline Haimerl · Eero Simoncelli · Cristina Savin -
2022 : Fine-tuning hierarchical circuits through learned stochastic co-modulation »
Caroline Haimerl · Eero Simoncelli · Cristina Savin -
2021 Poster: Adaptive Denoising via GainTuning »
Sreyas Mohan · Joshua L Vincent · Ramon Manzorro · Peter Crozier · Carlos Fernandez-Granda · Eero Simoncelli -
2021 Poster: Stochastic Solutions for Linear Inverse Problems using the Prior Implicit in a Denoiser »
Zahra Kadkhodaie · Eero Simoncelli -
2021 Poster: Impression learning: Online representation learning with synaptic plasticity »
Colin Bredenberg · Benjamin Lyo · Eero Simoncelli · Cristina Savin -
2020 Poster: Learning efficient task-dependent representations with synaptic plasticity »
Colin Bredenberg · Eero Simoncelli · Cristina Savin -
2019 : Local gain control and perceptual invariances »
Eero Simoncelli -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Flexible information routing in neural populations through stochastic comodulation »
Caroline Haimerl · Cristina Savin · Eero Simoncelli -
2019 Poster: Efficient characterization of electrically evoked responses for neural interfaces »
Nishal Shah · Sasidhar Madugula · Pawel Hottowy · Alexander Sher · Alan Litke · Liam Paninski · E.J. Chichilnisky -
2017 Spotlight: Deep Networks for Decoding Natural Images from Retinal Signals »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes Ballé · Eero Simoncelli -
2017 Oral: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes Ballé · Eero Simoncelli -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2015 Poster: Recognizing retinal ganglion cells in the dark »
Emile Richard · Georges A Goetz · E.J. Chichilnisky -
2014 Poster: Inferring synaptic conductances from spike trains with a biophysically inspired point process model »
Kenneth W Latimer · E.J. Chichilnisky · Fred Rieke · Jonathan W Pillow -
2012 Poster: Efficient and direct estimation of a neural subunit model for sensory coding »
Brett Vintch · Andrew Zaharia · J Movshon · Eero Simoncelli -
2012 Poster: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2012 Spotlight: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2011 Poster: Efficient coding with a population of Linear-Nonlinear neurons »
yan karklin · Eero Simoncelli -
2011 Poster: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2011 Spotlight: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2010 Poster: Implicit encoding of prior probabilities in optimal neural populations »
Deep Ganguli · Eero Simoncelli -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2008 Oral: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Poster: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Tutorial: Statistical Models of Visual Images »
Eero Simoncelli -
2007 Poster: A Bayesian Model of Conditioned Perception »
Alan A Stocker · Eero Simoncelli -
2006 Poster: Statistical Modeling of Images with Fields of Gaussian Scale Mixtures »
Siwei Lyu · Eero Simoncelli -
2006 Poster: Learning to be Bayesian without Supervision »
Martin Raphan · Eero Simoncelli